Suppr超能文献

电刺激双耳听觉。

Binaural hearing with electrical stimulation.

作者信息

Kan Alan, Litovsky Ruth Y

机构信息

University of Wisconsin-Madison Waisman Center, 1500 Highland Ave, Madison WI 53705, USA.

出版信息

Hear Res. 2015 Apr;322:127-37. doi: 10.1016/j.heares.2014.08.005. Epub 2014 Sep 2.

Abstract

Bilateral cochlear implantation is becoming a standard of care in many clinics. While much benefit has been shown through bilateral implantation, patients who have bilateral cochlear implants (CIs) still do not perform as well as normal hearing listeners in sound localization and understanding speech in noisy environments. This difference in performance can arise from a number of different factors, including the areas of hardware and engineering, surgical precision and pathology of the auditory system in deaf persons. While surgical precision and individual pathology are factors that are beyond careful control, improvements can be made in the areas of clinical practice and the engineering of binaural speech processors. These improvements should be grounded in a good understanding of the sensitivities of bilateral CI patients to the acoustic binaural cues that are important to normal hearing listeners for sound localization and speech in noise understanding. To this end, we review the current state-of-the-art in the understanding of the sensitivities of bilateral CI patients to binaural cues in electric hearing, and highlight the important issues and challenges as they relate to clinical practice and the development of new binaural processing strategies. This article is part of a Special Issue entitled .

摘要

双侧人工耳蜗植入正成为许多诊所的标准治疗方法。虽然双侧植入已显示出诸多益处,但双侧人工耳蜗植入(CI)患者在声音定位以及在嘈杂环境中理解语音方面仍不如正常听力的听众。这种表现差异可能源于多种不同因素,包括硬件和工程领域、手术精度以及聋人听觉系统的病理学。虽然手术精度和个体病理学是难以精确控制的因素,但在临床实践和双耳语音处理器工程方面仍可取得改进。这些改进应以充分理解双侧CI患者对声学双耳线索的敏感度为基础,这些线索对正常听力的听众进行声音定位和在噪声中理解语音非常重要。为此,我们回顾了当前对双侧CI患者在电听觉中对双耳线索敏感度的理解的最新进展,并强调了与临床实践和新双耳处理策略开发相关的重要问题和挑战。本文是名为《拉斯克奖》的特刊的一部分。

相似文献

1
Binaural hearing with electrical stimulation.
Hear Res. 2015 Apr;322:127-37. doi: 10.1016/j.heares.2014.08.005. Epub 2014 Sep 2.
2
Perception and coding of interaural time differences with bilateral cochlear implants.
Hear Res. 2015 Apr;322:138-50. doi: 10.1016/j.heares.2014.10.004. Epub 2014 Oct 19.
4
Binaural cue sensitivity in cochlear implant recipients with acoustic hearing preservation.
Hear Res. 2020 May;390:107929. doi: 10.1016/j.heares.2020.107929. Epub 2020 Feb 26.
5
Considering optogenetic stimulation for cochlear implants.
Hear Res. 2015 Apr;322:224-34. doi: 10.1016/j.heares.2015.01.005. Epub 2015 Jan 16.
6
Getting a decent (but sparse) signal to the brain for users of cochlear implants.
Hear Res. 2015 Apr;322:24-38. doi: 10.1016/j.heares.2014.11.009. Epub 2014 Dec 9.
7
Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
Hear Res. 2017 Jul;350:226-234. doi: 10.1016/j.heares.2017.05.004. Epub 2017 May 11.

引用本文的文献

2
Best Cochlear Locations for Delivering Interaural Timing Cues in Electric Hearing.
Res Sq. 2025 Mar 20:rs.3.rs-5640022. doi: 10.21203/rs.3.rs-5640022/v1.
3
Limitations on Temporal Processing by Cochlear Implant Users: A Compilation of Viewpoints.
Trends Hear. 2025 Jan-Dec;29:23312165251317006. doi: 10.1177/23312165251317006. Epub 2025 Mar 17.
6
Brazilian Society of Otology task force - cochlear implant ‒ recommendations based on strength of evidence.
Braz J Otorhinolaryngol. 2025 Jan-Feb;91(1):101512. doi: 10.1016/j.bjorl.2024.101512. Epub 2024 Sep 16.
7
Cortical mechanisms of across-ear speech integration investigated using functional near-infrared spectroscopy (fNIRS).
PLoS One. 2024 Sep 18;19(9):e0307158. doi: 10.1371/journal.pone.0307158. eCollection 2024.
8
Highly compromised auditory spatial perception in aided congenitally hearing-impaired and rapid improvement with tactile technology.
iScience. 2024 Aug 25;27(9):110808. doi: 10.1016/j.isci.2024.110808. eCollection 2024 Sep 20.
9
Cognitive Functions and Subjective Hearing in Cochlear Implant Users.
J Audiol Otol. 2024 Jul;28(3):176-185. doi: 10.7874/jao.2023.00276. Epub 2024 Apr 30.
10
Rate dependent neural responses of interaural-time-difference cues in fine-structure and envelope.
PeerJ. 2024 Apr 24;12:e17104. doi: 10.7717/peerj.17104. eCollection 2024.

本文引用的文献

1
Bilateral Loudness Balancing and Distorted Spatial Perception in Recipients of Bilateral Cochlear Implants.
Ear Hear. 2015 Sep-Oct;36(5):e225-36. doi: 10.1097/AUD.0000000000000174.
2
Across-frequency combination of interaural time difference in bilateral cochlear implant listeners.
Front Syst Neurosci. 2014 Mar 11;8:22. doi: 10.3389/fnsys.2014.00022. eCollection 2014.
3
The effect of interaural fluctuation rate on correlation change discrimination.
J Assoc Res Otolaryngol. 2014 Feb;15(1):115-29. doi: 10.1007/s10162-013-0426-8. Epub 2013 Nov 21.
5
Mapping procedures can produce non-centered auditory images in bilateral cochlear implantees.
J Acoust Soc Am. 2013 Feb;133(2):EL101-7. doi: 10.1121/1.4776772.
7
Sound localization in noise by normal-hearing listeners and cochlear implant users.
Ear Hear. 2012 Jul-Aug;33(4):445-57. doi: 10.1097/AUD.0b013e318257607b.
9
Binaural interference in bilateral cochlear-implant listeners.
J Acoust Soc Am. 2011 Nov;130(5):2939-50. doi: 10.1121/1.3641400.
10
Review of recent work on spatial hearing skills in children with bilateral cochlear implants.
Cochlear Implants Int. 2011 May;12 Suppl 1(Suppl 1):S30-4. doi: 10.1179/146701011X13001035752372.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验