Orban de Xivry Jean-Jacques, Shadmehr Reza
Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Avenue Georges Lemaitre, 4, 1348, Louvain-La-Neuve, Belgium,
Exp Brain Res. 2014 Nov;232(11):3379-95. doi: 10.1007/s00221-014-4087-6. Epub 2014 Sep 9.
Learning to control our movements is accompanied by neuroplasticity of motor areas of the brain. The mechanisms of neuroplasticity are diverse and produce what is referred to as the motor engram, i.e., the neural trace of the motor memory. Transcranial direct current stimulation (tDCS) alters the neural and behavioral correlates of motor learning, but its precise influence on the motor engram is unknown. In this review, we summarize the effects of tDCS on neural activity and suggest a few key principles: (1) Firing rates are increased by anodal polarization and decreased by cathodal polarization, (2) anodal polarization strengthens newly formed associations, and (3) polarization modulates the memory of new/preferred firing patterns. With these principles in mind, we review the effects of tDCS on motor control, motor learning, and clinical applications. The increased spontaneous and evoked firing rates may account for the modulation of dexterity in non-learning tasks by tDCS. The facilitation of new association may account for the effect of tDCS on learning in sequence tasks while the ability of tDCS to strengthen memories of new firing patterns may underlie the effect of tDCS on consolidation of skills. We then describe the mechanisms of neuroplasticity of motor cortical areas and how they might be influenced by tDCS. We end with current challenges for the fields of brain stimulation and motor learning.
学习控制我们的动作伴随着大脑运动区域的神经可塑性。神经可塑性的机制多种多样,并产生了所谓的运动记忆痕迹,即运动记忆的神经痕迹。经颅直流电刺激(tDCS)会改变运动学习的神经和行为相关性,但其对运动记忆痕迹的确切影响尚不清楚。在这篇综述中,我们总结了tDCS对神经活动的影响,并提出了一些关键原则:(1)阳极极化会增加放电率,阴极极化会降低放电率;(2)阳极极化会加强新形成的关联;(3)极化会调节对新的/偏好的放电模式的记忆。牢记这些原则,我们回顾了tDCS对运动控制、运动学习和临床应用的影响。自发和诱发放电率的增加可能解释了tDCS对非学习任务中灵活性的调节作用。新关联的促进作用可能解释了tDCS对序列任务学习的影响,而tDCS加强新放电模式记忆的能力可能是tDCS对技能巩固产生影响的基础。然后,我们描述了运动皮层区域神经可塑性的机制以及它们可能如何受到tDCS的影响。我们最后阐述了脑刺激和运动学习领域当前面临的挑战。