Suppr超能文献

用于长期全披露监测的低功耗可穿戴式心电图贴片的临床验证。

Clinical validation of a low-power and wearable ECG patch for long term full-disclosure monitoring.

作者信息

Torfs Tom, Smeets Christophe J P, Geng Di, Berset Torfinn, Van der Auwera Jo, Vandervoort Pieter, Grieten Lars

机构信息

Imec, Kapeldreef 75, Heverlee, Leuven, Belgium.

Department of Cardiology, Ziekenhuis Oost-Limburg, Schiepse Bos 6, Genk, Belgium; Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, Hasselt, Belgium.

出版信息

J Electrocardiol. 2014 Nov-Dec;47(6):881-9. doi: 10.1016/j.jelectrocard.2014.08.012. Epub 2014 Aug 14.

Abstract

BACKGROUND

Detection of intermittent atrial fibrillation (AF) is done using a 24-h Holter. Holter recordings are powerful but lack the comfort and have limited recording times resulting in under diagnosing of intermittent AF.

OBJECTIVE

Within this work we evaluated and compared a novel miniaturized three-channel ECG monitoring patch versus a 24-h Holter system.

METHODS

Both patients with a chronic AF rhythm (n=5) as well as patients with an AF rhythm that underwent electrical reconversion (n = 5) were equipped with both a 24-h Holter and ECG patch.

RESULTS

Alignment of raw data of both ECG systems allowed cross-correlation analysis. Overall good correlations of up to 85% were obtained. RR-interval analysis of both systems resulted in very high correlations of 99% and higher. AF analysis showed correct identification of AF on both ECG systems.

CONCLUSIONS

The performance of our ECG patch matches that of the 24-h Holter and could provide a suitable tool for long-term monitoring applications.

摘要

背景

间歇性房颤(AF)的检测通过24小时动态心电图监测(Holter)进行。Holter记录功能强大,但舒适性欠佳且记录时间有限,导致间歇性房颤的诊断不足。

目的

在本研究中,我们评估并比较了一种新型小型三通道心电图监测贴片与24小时Holter系统。

方法

慢性房颤节律患者(n = 5)以及接受电复律的房颤节律患者(n = 5)均同时配备24小时Holter和心电图贴片。

结果

两个心电图系统的原始数据对齐后可进行互相关分析。总体相关性良好,高达85%。两个系统的RR间期分析显示相关性非常高,达到99%及以上。房颤分析表明,两个心电图系统均能正确识别房颤。

结论

我们的心电图贴片性能与24小时Holter相当,可为长期监测应用提供合适的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验