Suppr超能文献

等待手术的患者全膝关节置换术后六个月不良结局的预测

Prediction of poor outcomes six months following total knee arthroplasty in patients awaiting surgery.

作者信息

Lungu Eugen, Desmeules François, Dionne Clermont E, Belzile Etienne L, Vendittoli Pascal-André

机构信息

Orthopaedic Clinical Research Unit, Maisonneuve-Rosemont Hospital University of Montreal affiliated Research Center, CP 6128 Succursale Centre-Ville, Montréal H3C 3 J7 Quebec, Canada.

出版信息

BMC Musculoskelet Disord. 2014 Sep 8;15:299. doi: 10.1186/1471-2474-15-299.

Abstract

BACKGROUND

Identification of patients experiencing poor outcomes following total knee arthroplasty (TKA) before the intervention could allow better case selection, patient preparation and, likely, improved outcomes. The objective was to develop a preliminary prediction rule (PR) to identify patients enrolled on surgical wait lists who are at the greatest risk of poor outcomes 6 months after TKA.

METHODS

141 patients scheduled for TKA were recruited prospectively from the wait lists of 3 hospitals in Quebec City, Canada. Knee pain, stiffness and function were measured 6 months after TKA with the Western Ontario and McMaster Osteoarthritis Index (WOMAC) and participants in the lowest quintile for the WOMAC total score were considered to have a poor outcome. Several variables measured at enrolment on the wait lists (baseline) were considered potential predictors: demographic, socioeconomic, psychosocial, and clinical factors including pain, stiffness and functional status measured with the WOMAC. The prediction rule was built with recursive partitioning.

RESULTS

The best prediction was provided by 5 items of the baseline WOMAC. The rule had a sensitivity of 82.1% (95% CI: 66.7-95.8), a specificity of 71.7% (95% CI: 62.8-79.8), a positive predictive value of 41.8% (95% CI: 29.7-55.0), a negative predictive value of 94.2% (95% CI: 87.1-97.5) and positive and negative likelihood ratios of 2.9 (95% CI: 1.8-4.7) and 0.3 (95% CI: 0.1-0.6) respectively.

CONCLUSIONS

The developed PR is a promising tool to identify patients at risk of worse outcomes 6 months after TKA as it could help improve the management of these patients. Further validation of this rule is however warranted before clinical use.

摘要

背景

在进行全膝关节置换术(TKA)之前识别出预后不良的患者,有助于更好地进行病例选择、患者准备,并有可能改善手术效果。本研究的目的是制定一个初步预测规则(PR),以识别手术等待名单上全膝关节置换术后6个月预后最差风险最高的患者。

方法

前瞻性地从加拿大魁北克市3家医院的等待名单中招募了141例计划进行全膝关节置换术的患者。在全膝关节置换术后6个月,采用西安大略和麦克马斯特大学骨关节炎指数(WOMAC)测量膝关节疼痛、僵硬和功能,WOMAC总分处于最低五分位数的参与者被认为预后不良。在等待名单登记时(基线)测量的几个变量被视为潜在预测因素:人口统计学、社会经济、心理社会和临床因素,包括用WOMAC测量的疼痛、僵硬和功能状态。通过递归划分建立预测规则。

结果

基线WOMAC的5项指标提供了最佳预测。该规则的敏感性为82.1%(95%CI:66.7 - 95.8),特异性为71.7%(95%CI:62.8 - 79.8),阳性预测值为41.8%(95%CI:29.7 - 55.0),阴性预测值为94.2%(95%CI:87.1 - 97.5),阳性和阴性似然比分别为2.9(95%CI:1.8 - 4.7)和0.3(95%CI:0.1 - 0.6)。

结论

所制定的预测规则是识别全膝关节置换术后6个月预后较差风险患者的一个有前景的工具,因为它有助于改善这些患者的管理。然而,在临床应用之前,该规则需要进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ece/4247215/e25dae5e7993/12891_2014_Article_2318_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验