Suppr超能文献

组织工程支架临床转化的前景

A perspective on the clinical translation of scaffolds for tissue engineering.

作者信息

Webber Matthew J, Khan Omar F, Sydlik Stefanie A, Tang Benjamin C, Langer Robert

机构信息

Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 76-661, Cambridge, MA, 02139, USA.

出版信息

Ann Biomed Eng. 2015 Mar;43(3):641-56. doi: 10.1007/s10439-014-1104-7. Epub 2014 Sep 9.

Abstract

Scaffolds have been broadly applied within tissue engineering and regenerative medicine to regenerate, replace, or augment diseased or damaged tissue. For a scaffold to perform optimally, several design considerations must be addressed, with an eye toward the eventual form, function, and tissue site. The chemical and mechanical properties of the scaffold must be tuned to optimize the interaction with cells and surrounding tissues. For complex tissue engineering, mass transport limitations, vascularization, and host tissue integration are important considerations. As the tissue architecture to be replaced becomes more complex and hierarchical, scaffold design must also match this complexity to recapitulate a functioning tissue. We outline these design constraints and highlight creative and emerging strategies to overcome limitations and modulate scaffold properties for optimal regeneration. We also highlight some of the most advanced strategies that have seen clinical application and discuss the hurdles that must be overcome for clinical use and commercialization of tissue engineering technologies. Finally, we provide a perspective on the future of scaffolds as a functional contributor to advancing tissue engineering and regenerative medicine.

摘要

支架已在组织工程和再生医学中得到广泛应用,以再生、替代或增强患病或受损组织。为使支架发挥最佳性能,必须考虑几个设计因素,着眼于最终的形态、功能和组织部位。必须调整支架的化学和机械性能,以优化与细胞和周围组织的相互作用。对于复杂的组织工程,传质限制、血管化和宿主组织整合是重要的考虑因素。随着要替代的组织结构变得更加复杂和分层,支架设计也必须匹配这种复杂性,以重现功能正常的组织。我们概述了这些设计限制,并强调了创新和新兴策略,以克服限制并调节支架性能以实现最佳再生。我们还强调了一些已应用于临床的最先进策略,并讨论了组织工程技术临床应用和商业化必须克服的障碍。最后,我们展望了支架作为推动组织工程和再生医学发展的功能性贡献者的未来。

相似文献

1
A perspective on the clinical translation of scaffolds for tissue engineering.
Ann Biomed Eng. 2015 Mar;43(3):641-56. doi: 10.1007/s10439-014-1104-7. Epub 2014 Sep 9.
2
Current state of fabrication technologies and materials for bone tissue engineering.
Acta Biomater. 2018 Oct 15;80:1-30. doi: 10.1016/j.actbio.2018.09.031. Epub 2018 Sep 22.
4
Esophageal tissue engineering: a new approach for esophageal replacement.
World J Gastroenterol. 2012 Dec 21;18(47):6900-7. doi: 10.3748/wjg.v18.i47.6900.
5
Gelatin as Biomaterial for Tissue Engineering.
Curr Pharm Des. 2017;23(24):3567-3584. doi: 10.2174/0929867324666170511123101.
6
Engineered tissue grafts: opportunities and challenges in regenerative medicine.
Wiley Interdiscip Rev Syst Biol Med. 2012 Mar-Apr;4(2):207-20. doi: 10.1002/wsbm.164. Epub 2011 Oct 19.
7
A review on the use of computational methods to characterize, design, and optimize tissue engineering scaffolds, with a potential in 3D printing fabrication.
J Biomed Mater Res B Appl Biomater. 2019 Jul;107(5):1329-1351. doi: 10.1002/jbm.b.34226. Epub 2018 Oct 9.
9
Thermally-triggered fabrication of cell sheets for tissue engineering and regenerative medicine.
Adv Drug Deliv Rev. 2019 Jan 1;138:276-292. doi: 10.1016/j.addr.2019.01.004. Epub 2019 Jan 11.
10
Towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds to foster bone regeneration.
Acta Biomater. 2020 Jan 1;101:117-127. doi: 10.1016/j.actbio.2019.10.029. Epub 2019 Oct 25.

引用本文的文献

1
Pre-Loading of Cells via Vapor Sublimation and the Deposition Polymerization Process with a 3D Porous Scaffold for Cell Cultures.
ACS Biomater Sci Eng. 2025 Aug 11;11(8):4941-4953. doi: 10.1021/acsbiomaterials.5c00439. Epub 2025 Jul 10.
2
Dose-dependent osteoimmunomodulatory effects of amorphous calcium phosphate nanoparticles promote 3D-printed scaffold-mediated bone regeneration.
Bioact Mater. 2025 May 13;51:197-210. doi: 10.1016/j.bioactmat.2025.05.010. eCollection 2025 Sep.
3
Skeletal Muscle Tissue Engineering: From Tissue Regeneration to Biorobotics.
Cyborg Bionic Syst. 2025 May 15;6:0279. doi: 10.34133/cbsystems.0279. eCollection 2025.
5
A review: Carrier-based hydrogels containing bioactive molecules and stem cells for ischemic stroke therapy.
Bioact Mater. 2025 Mar 5;49:39-62. doi: 10.1016/j.bioactmat.2025.01.014. eCollection 2025 Jul.
6
Recent regulatory developments in EU Medical Device Regulation and their impact on biomaterials translation.
Bioeng Transl Med. 2024 Oct 16;10(2):e10721. doi: 10.1002/btm2.10721. eCollection 2025 Mar.
7
Histological assessment of a novel restorative coronary artery bypass graft in a chronic ovine model.
Front Bioeng Biotechnol. 2025 Feb 10;13:1488794. doi: 10.3389/fbioe.2025.1488794. eCollection 2025.
8
Fibrous scaffolds loaded with BMSC-derived apoptotic vesicles promote wound healing by inducing macrophage polarization.
Genes Dis. 2024 Aug 9;12(2):101388. doi: 10.1016/j.gendis.2024.101388. eCollection 2025 Mar.
9
Tremendous advances, multifaceted challenges and feasible future prospects of biodegradable medical polymer materials.
RSC Adv. 2024 Oct 11;14(44):32267-32283. doi: 10.1039/d4ra00075g. eCollection 2024 Oct 9.

本文引用的文献

1
A viscoelastic poromechanical model of the knee joint in large compression.
Med Eng Phys. 2014 Aug;36(8):998-1006. doi: 10.1016/j.medengphy.2014.04.004. Epub 2014 Jun 2.
3
Extracellular Matrix Scaffold Technology for Bioartificial Pancreas Engineering: State of the Art and Future Challenges.
J Diabetes Sci Technol. 2014 Jan;8(1):159-169. doi: 10.1177/1932296813519558. Epub 2014 Jan 1.
4
[Possibilities and limits of modern polyethylenes. With respect to the application profile].
Orthopade. 2014 Jun;43(6):515-21. doi: 10.1007/s00132-014-2297-z.
5
Automated decellularization of intact, human-sized lungs for tissue engineering.
Tissue Eng Part C Methods. 2015 Jan;21(1):94-103. doi: 10.1089/ten.TEC.2013.0756.
6
Collagen (NeuraGen®) nerve conduits and stem cells for peripheral nerve gap repair.
Neurosci Lett. 2014 Jun 20;572:26-31. doi: 10.1016/j.neulet.2014.04.029. Epub 2014 May 2.
8
Gigantic business: titin properties and function through thick and thin.
Circ Res. 2014 Mar 14;114(6):1052-68. doi: 10.1161/CIRCRESAHA.114.301286.
9
Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction.
Ann Biomed Eng. 2014 Jul;42(7):1508-16. doi: 10.1007/s10439-013-0933-0. Epub 2013 Nov 19.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验