Suppr超能文献

使用超极化磁共振波谱评估心肌梗死后体内线粒体三羧酸循环活性受损。

Impaired in vivo mitochondrial Krebs cycle activity after myocardial infarction assessed using hyperpolarized magnetic resonance spectroscopy.

作者信息

Dodd Michael S, Atherton Helen J, Carr Carolyn A, Stuckey Daniel J, West James A, Griffin Julian L, Radda George K, Clarke Kieran, Heather Lisa C, Tyler Damian J

机构信息

Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom (M.S.D., H.J.A., C.A.C., G.K.R., K.C., L.C.H., D.J.T.); Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom (D.J.S.); and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (J.A.W., J.L.G.).

出版信息

Circ Cardiovasc Imaging. 2014 Nov;7(6):895-904. doi: 10.1161/CIRCIMAGING.114.001857. Epub 2014 Sep 8.

Abstract

BACKGROUND

Myocardial infarction (MI) is one of the leading causes of heart failure. An increasing body of evidence links alterations in cardiac metabolism and mitochondrial function with the progression of heart disease. The aim of this work was to, therefore, follow the in vivo mitochondrial metabolic alterations caused by MI, thereby allowing a greater understanding of the interplay between metabolic and functional abnormalities.

METHODS AND RESULTS

Using hyperpolarized carbon-13 ((13)C)-magnetic resonance spectroscopy, in vivo alterations in mitochondrial metabolism were assessed for 22 weeks after surgically induced MI with reperfusion in female Wister rats. One week after MI, there were no detectable alterations in in vivo cardiac mitochondrial metabolism over the range of ejection fractions observed (from 28% to 84%). At 6 weeks after MI, in vivo mitochondrial Krebs cycle activity was impaired, with decreased (13)C-label flux into citrate, glutamate, and acetylcarnitine, which correlated with the degree of cardiac dysfunction. These changes were independent of alterations in pyruvate dehydrogenase flux. By 22 weeks, alterations were also seen in pyruvate dehydrogenase flux, which decreased at lower ejection fractions. These results were confirmed using in vitro analysis of enzyme activities and metabolomic profiles of key intermediates.

CONCLUSIONS

The in vivo decrease in Krebs cycle activity in the 6-week post-MI heart may represent an early maladaptive phase in the metabolic alterations after MI in which reductions in Krebs cycle activity precede a reduction in pyruvate dehydrogenase flux. Changes in mitochondrial metabolism in heart disease are progressive and proportional to the degree of cardiac impairment.

摘要

背景

心肌梗死(MI)是心力衰竭的主要原因之一。越来越多的证据表明,心脏代谢和线粒体功能的改变与心脏病的进展有关。因此,本研究的目的是追踪MI引起的体内线粒体代谢变化,从而更深入地了解代谢异常与功能异常之间的相互作用。

方法与结果

使用超极化碳-13((13)C)磁共振波谱,在雌性Wistar大鼠中,对手术诱导MI并再灌注后22周的体内线粒体代谢变化进行评估。MI后1周,在所观察到的射血分数范围内(从28%至84%),未检测到体内心脏线粒体代谢的变化。MI后6周,体内线粒体三羧酸循环活性受损,进入柠檬酸、谷氨酸和乙酰肉碱的(13)C标记通量降低,这与心脏功能障碍程度相关。这些变化与丙酮酸脱氢酶通量的改变无关。到22周时,丙酮酸脱氢酶通量也出现变化,在较低射血分数时降低。这些结果通过对关键中间体的酶活性和代谢组学谱的体外分析得到证实。

结论

MI后6周心脏体内三羧酸循环活性降低可能代表MI后代谢变化中的早期适应不良阶段,其中三羧酸循环活性降低先于丙酮酸脱氢酶通量降低。心脏病中线粒体代谢的变化是渐进的,且与心脏损伤程度成正比。

相似文献

1
Impaired in vivo mitochondrial Krebs cycle activity after myocardial infarction assessed using hyperpolarized magnetic resonance spectroscopy.
Circ Cardiovasc Imaging. 2014 Nov;7(6):895-904. doi: 10.1161/CIRCIMAGING.114.001857. Epub 2014 Sep 8.
2
Real-time assessment of Krebs cycle metabolism using hyperpolarized 13C magnetic resonance spectroscopy.
FASEB J. 2009 Aug;23(8):2529-38. doi: 10.1096/fj.09-129171. Epub 2009 Mar 27.
3
The cycling of acetyl-coenzyme A through acetylcarnitine buffers cardiac substrate supply: a hyperpolarized 13C magnetic resonance study.
Circ Cardiovasc Imaging. 2012 Mar;5(2):201-9. doi: 10.1161/CIRCIMAGING.111.969451. Epub 2012 Jan 11.
4
Direct noninvasive estimation of myocardial tricarboxylic acid cycle flux in vivo using hyperpolarized ¹³C magnetic resonance.
J Mol Cell Cardiol. 2015 Oct;87:129-37. doi: 10.1016/j.yjmcc.2015.08.012. Epub 2015 Aug 19.
5
6
In vivo alterations in cardiac metabolism and function in the spontaneously hypertensive rat heart.
Cardiovasc Res. 2012 Jul 1;95(1):69-76. doi: 10.1093/cvr/cvs164. Epub 2012 May 16.
7
Hyperpolarized 13C-magnetic resonance spectroscopy: are we ready for metabolic imaging?
Circ Cardiovasc Imaging. 2014 Nov;7(6):854-6. doi: 10.1161/CIRCIMAGING.114.002648.
10
Myocardial energy shortage and unmet anaplerotic needs in the fasted long-chain acyl-CoA dehydrogenase knockout mouse.
Cardiovasc Res. 2013 Dec 1;100(3):441-9. doi: 10.1093/cvr/cvt212. Epub 2013 Sep 16.

引用本文的文献

1
Hyperpolarized-MRI in Hypertrophic Cardiomyopathy: A Narrative Review.
Clin Med Insights Cardiol. 2025 Aug 29;19:11795468251369234. doi: 10.1177/11795468251369234. eCollection 2025.
2
Targeting Lactic Acid Modification in Ischemic Heart Diseases: Novel Therapeutics and Mechanism.
J Cardiovasc Transl Res. 2025 Apr;18(2):257-267. doi: 10.1007/s12265-025-10593-3. Epub 2025 Feb 7.
3
Volumetric Patch-Based Super-Resolution Reconstruction of Hyperpolarized C Cardiac MRI.
IEEE Access. 2024;12:164315-164324. doi: 10.1109/access.2024.3491592. Epub 2024 Nov 4.
4
Advances in myocardial energy metabolism: metabolic remodelling in heart failure and beyond.
Cardiovasc Res. 2024 Dec 14;120(16):1996-2016. doi: 10.1093/cvr/cvae231.
7
Multi-nuclear magnetic resonance spectroscopy: state of the art and future directions.
Insights Imaging. 2022 Aug 17;13(1):135. doi: 10.1186/s13244-022-01262-z.
9
Lactate and Myocardiac Energy Metabolism.
Front Physiol. 2021 Aug 17;12:715081. doi: 10.3389/fphys.2021.715081. eCollection 2021.
10
Metabolomics and cardiovascular imaging: a combined approach for cardiovascular ageing.
ESC Heart Fail. 2021 Jun;8(3):1738-1750. doi: 10.1002/ehf2.13274. Epub 2021 Mar 30.

本文引用的文献

1
Metabolic imaging of patients with prostate cancer using hyperpolarized [1-¹³C]pyruvate.
Sci Transl Med. 2013 Aug 14;5(198):198ra108. doi: 10.1126/scitranslmed.3006070.
2
Hyperpolarized butyrate: a metabolic probe of short chain fatty acid metabolism in the heart.
Magn Reson Med. 2014 May;71(5):1663-9. doi: 10.1002/mrm.24849. Epub 2013 Jun 24.
3
Metabolic imaging of acute and chronic infarction in the perfused rat heart using hyperpolarised [1-13C]pyruvate.
NMR Biomed. 2013 Nov;26(11):1441-50. doi: 10.1002/nbm.2972. Epub 2013 Jun 14.
4
In vivo mouse cardiac hyperpolarized magnetic resonance spectroscopy.
J Cardiovasc Magn Reson. 2013 Feb 18;15(1):19. doi: 10.1186/1532-429X-15-19.
5
Imaging the cardiac diet.
Eur J Heart Fail. 2013 Feb;15(2):123-4. doi: 10.1093/eurjhf/hfs211.
6
7
In vivo alterations in cardiac metabolism and function in the spontaneously hypertensive rat heart.
Cardiovasc Res. 2012 Jul 1;95(1):69-76. doi: 10.1093/cvr/cvs164. Epub 2012 May 16.
8
The cycling of acetyl-coenzyme A through acetylcarnitine buffers cardiac substrate supply: a hyperpolarized 13C magnetic resonance study.
Circ Cardiovasc Imaging. 2012 Mar;5(2):201-9. doi: 10.1161/CIRCIMAGING.111.969451. Epub 2012 Jan 11.
9
Hyperpolarized magnetic resonance: a novel technique for the in vivo assessment of cardiovascular disease.
Circulation. 2011 Oct 4;124(14):1580-94. doi: 10.1161/CIRCULATIONAHA.111.024919.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验