Suppr超能文献

多核磁共振波谱学:现状与未来方向。

Multi-nuclear magnetic resonance spectroscopy: state of the art and future directions.

作者信息

Wei Yi, Yang Caiwei, Jiang Hanyu, Li Qian, Che Feng, Wan Shang, Yao Shan, Gao Feifei, Zhang Tong, Wang Jiazheng, Song Bin

机构信息

Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China.

Clinical & Technical Support, Philips Healthcare, Beijing, China.

出版信息

Insights Imaging. 2022 Aug 17;13(1):135. doi: 10.1186/s13244-022-01262-z.

Abstract

With the development of heteronuclear fluorine, sodium, phosphorus, and other probes and imaging technologies as well as the optimization of magnetic resonance imaging (MRI) equipment and sequences, multi-nuclear magnetic resonance (multi-NMR) has enabled localize molecular activities in vivo that are central to a variety of diseases, including cardiovascular disease, neurodegenerative pathologies, metabolic diseases, kidney, and tumor, to shift from the traditional morphological imaging to the molecular imaging, precision diagnosis, and treatment mode. However, due to the low natural abundance and low gyromagnetic ratios, the clinical application of multi-NMR has been hampered. Several techniques have been developed to amplify the NMR sensitivity such as the dynamic nuclear polarization, spin-exchange optical pumping, and brute-force polarization. Meanwhile, a wide range of nuclei can be hyperpolarized, such as H, He, C,  N, P, and Xe. The signal can be increased and allows real-time observation of biological perfusion, metabolite transport, and metabolic reactions in vivo, overcoming the disadvantages of conventional magnetic resonance of low sensitivity. HP-NMR imaging of different nuclear substrates provides a unique opportunity and invention to map the metabolic changes in various organs without invasive procedures. This review aims to focus on the recent applications of multi-NMR technology not only in a range of preliminary animal experiments but also in various disease spectrum in human. Furthermore, we will discuss the future challenges and opportunities of this multi-NMR from a clinical perspective, in the hope of truly bridging the gap between cutting-edge molecular biology and clinical applications.

摘要

随着异核氟、钠、磷等探针及成像技术的发展,以及磁共振成像(MRI)设备和序列的优化,多核磁共振(multi-NMR)已使对包括心血管疾病、神经退行性病变、代谢性疾病、肾脏疾病和肿瘤在内的多种疾病至关重要的体内分子活动定位,从传统的形态学成像转向分子成像、精准诊断和治疗模式。然而,由于天然丰度低和旋磁比低,多核磁共振的临床应用受到了阻碍。已经开发了几种技术来提高核磁共振的灵敏度,如动态核极化、自旋交换光泵浦和强力极化。同时,多种原子核可以被超极化,如H、He、C、N、P和Xe。信号可以增强,并允许实时观察体内生物灌注、代谢物转运和代谢反应,克服了传统磁共振灵敏度低的缺点。不同核底物的高分辨核磁共振成像提供了一个独特的机会和发明,能够在不进行侵入性操作的情况下描绘各种器官中的代谢变化。本综述旨在关注多核磁共振技术最近不仅在一系列初步动物实验中的应用,也包括在人类各种疾病谱中的应用。此外,我们将从临床角度讨论这种多核磁共振未来面临的挑战和机遇,希望真正弥合前沿分子生物学与临床应用之间的差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0493/9385900/5c8c23798265/13244_2022_1262_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验