Suppr超能文献

基于多保真度高斯过程分类的心房颤动模型诱导区域快速表征

Fast Characterization of Inducible Regions of Atrial Fibrillation Models With Multi-Fidelity Gaussian Process Classification.

作者信息

Gander Lia, Pezzuto Simone, Gharaviri Ali, Krause Rolf, Perdikaris Paris, Sahli Costabal Francisco

机构信息

Center for Computational Medicine in Cardiology, Euler Institute, Università della Svizzera italiana, Lugano, Switzerland.

Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, United States.

出版信息

Front Physiol. 2022 Mar 7;13:757159. doi: 10.3389/fphys.2022.757159. eCollection 2022.

Abstract

Computational models of atrial fibrillation have successfully been used to predict optimal ablation sites. A critical step to assess the effect of an ablation pattern is to pace the model from different, potentially random, locations to determine whether arrhythmias can be induced in the atria. In this work, we propose to use multi-fidelity Gaussian process classification on Riemannian manifolds to efficiently determine the regions in the atria where arrhythmias are inducible. We build a probabilistic classifier that operates directly on the atrial surface. We take advantage of lower resolution models to explore the atrial surface and combine seamlessly with high-resolution models to identify regions of inducibility. We test our methodology in 9 different cases, with different levels of fibrosis and ablation treatments, totalling 1,800 high resolution and 900 low resolution simulations of atrial fibrillation. When trained with 40 samples, our multi-fidelity classifier that combines low and high resolution models, shows a balanced accuracy that is, on average, 5.7% higher than a nearest neighbor classifier. We hope that this new technique will allow faster and more precise clinical applications of computational models for atrial fibrillation. All data and code accompanying this manuscript will be made publicly available at: https://github.com/fsahli/AtrialMFclass.

摘要

心房颤动的计算模型已成功用于预测最佳消融部位。评估消融模式效果的关键步骤是从不同的、可能随机的位置对模型进行起搏,以确定心房是否能诱发心律失常。在这项工作中,我们建议在黎曼流形上使用多保真高斯过程分类,以有效地确定心房中可诱发心律失常的区域。我们构建了一个直接在心房表面运行的概率分类器。我们利用低分辨率模型探索心房表面,并与高分辨率模型无缝结合以识别可诱发区域。我们在9种不同情况下测试了我们的方法,这些情况具有不同程度的纤维化和消融治疗,总共进行了1800次高分辨率和900次低分辨率的心房颤动模拟。当使用40个样本进行训练时,我们结合低分辨率和高分辨率模型的多保真分类器显示出的平衡准确率,平均比最近邻分类器高5.7%。我们希望这项新技术将使心房颤动计算模型在临床应用中更快、更精确。本手稿附带的所有数据和代码将在以下网址公开提供:https://github.com/fsahli/AtrialMFclass

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41aa/8940533/1a9d802a263a/fphys-13-757159-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验