Département de Chimie Moléculaire UMR 5250, Biosystèmes Electrochimique and Analytiques, CNRS, University of Grenoble Alpes Grenoble, France.
Front Chem. 2014 Aug 27;2:63. doi: 10.3389/fchem.2014.00063. eCollection 2014.
A biosensor device is defined by its biological, or bioinspired receptor unit with unique specificities toward corresponding analytes. These analytes are often of biological origin like DNAs of bacteria or viruses, or proteins which are generated from the immune system (antibodies, antigens) of infected or contaminated living organisms. Such analytes can also be simple molecules like glucose or pollutants when a biological receptor unit with particular specificity is available. One of many other challenges in biosensor development is the efficient signal capture of the biological recognition event (transduction). Such transducers translate the interaction of the analyte with the biological element into electrochemical, electrochemiluminescent, magnetic, gravimetric, or optical signals. In order to increase sensitivities and to lower detection limits down to even individual molecules, nanomaterials are promising candidates due to the possibility to immobilize an enhanced quantity of bioreceptor units at reduced volumes and even to act itself as transduction element. Among such nanomaterials, gold nanoparticles, semi-conductor quantum dots, polymer nanoparticles, carbon nanotubes, nanodiamonds, and graphene are intensively studied. Due to the vast evolution of this research field, this review summarizes in a non-exhaustive way the advantages of nanomaterials by focusing on nano-objects which provide further beneficial properties than "just" an enhanced surface area.
生物传感器设备由其生物或仿生受体单元定义,该单元对相应的分析物具有独特的特异性。这些分析物通常具有生物来源,如细菌或病毒的 DNA,或来自受感染或污染的生物体的免疫系统(抗体、抗原)产生的蛋白质。当存在具有特定特异性的生物受体单元时,此类分析物也可以是简单的分子,如葡萄糖或污染物。生物传感器开发中的众多其他挑战之一是生物识别事件(转换)的有效信号捕获。此类换能器将分析物与生物元件的相互作用转化为电化学、电致化学发光、磁、重量或光学信号。为了提高灵敏度并将检测限降低到甚至单个分子,由于有可能在减少的体积中固定增强数量的生物受体单元,甚至可以自身充当转换元件,纳米材料是有前途的候选者。在这些纳米材料中,金纳米粒子、半导体量子点、聚合物纳米粒子、碳纳米管、纳米金刚石和石墨烯得到了深入研究。由于该研究领域的巨大发展,本文综述以纳米物体为重点,以非详尽的方式总结了纳米材料的优势,这些纳米物体除了“仅仅”增加表面积之外还提供了进一步的有益特性。