文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于电化学阻抗谱的生物传感器用于无标记病原体检测。

Electrochemical Impedance Spectroscopy-Based Biosensors for Label-Free Detection of Pathogens.

作者信息

Zhang Huaiwei, Sun Zhuang, Sun Kaiqiang, Liu Quanwang, Chu Wubo, Fu Li, Dai Dan, Liang Zhiqiang, Lin Cheng-Te

机构信息

College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.

Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NlMTE), Chinese Academy of Sciences, Ningbo 315201, China.

出版信息

Biosensors (Basel). 2025 Jul 10;15(7):443. doi: 10.3390/bios15070443.


DOI:10.3390/bios15070443
PMID:40710093
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12293632/
Abstract

The escalating threat of infectious diseases necessitates the development of diagnostic technologies that are not only rapid and sensitive but also deployable at the point of care. Electrochemical impedance spectroscopy (EIS) has emerged as a leading technique for the label-free detection of pathogens, offering a unique combination of sensitivity, non-invasiveness, and adaptability. This review provides a comprehensive overview of the design and application of EIS-based biosensors tailored for pathogen detection, focusing on critical components such as biorecognition elements, electrode materials, nanomaterial integration, and surface immobilization strategies. Special emphasis is placed on the mechanisms of signal generation under Faradaic and non-Faradaic modes and how these underpin performance characteristics such as the limit of detection, specificity, and response time. The application spectrum spans bacterial, viral, fungal, and parasitic pathogens, with case studies highlighting detection in complex matrices such as blood, saliva, food, and environmental water. Furthermore, integration with microfluidics and point-of-care systems is explored as a pathway toward real-world deployment. Emerging strategies for multiplexed detection and the utilization of novel nanomaterials underscore the dynamic evolution of the field. Key challenges-including non-specific binding, matrix effects, the inherently low ΔR/decade sensitivity of impedance transduction, and long-term stability-are critically evaluated alongside recent breakthroughs. This synthesis aims to support the future development of robust, scalable, and user-friendly EIS-based pathogen biosensors with the potential to transform diagnostics across healthcare, food safety, and environmental monitoring.

摘要

传染病威胁的不断升级,使得开发不仅快速、灵敏,而且可在护理点使用的诊断技术成为必要。电化学阻抗谱(EIS)已成为用于无标记病原体检测的领先技术,具有灵敏度、非侵入性和适应性的独特组合。本文综述全面概述了针对病原体检测的基于EIS的生物传感器的设计与应用,重点关注生物识别元件、电极材料、纳米材料整合和表面固定策略等关键组件。特别强调了法拉第和非法拉第模式下信号产生的机制,以及这些机制如何支撑检测限、特异性和响应时间等性能特征。其应用范围涵盖细菌、病毒、真菌和寄生虫病原体,案例研究突出了在血液、唾液、食品和环境水等复杂基质中的检测。此外,还探讨了与微流控和护理点系统的集成,作为实现实际应用的途径。多重检测的新兴策略和新型纳米材料的利用凸显了该领域的动态发展。包括非特异性结合、基质效应、阻抗转导固有的低ΔR/十倍频程灵敏度以及长期稳定性在内的关键挑战,与近期的突破一起得到了批判性评估。本综述旨在支持未来开发强大、可扩展且用户友好的基于EIS的病原体生物传感器,其具有变革医疗保健、食品安全和环境监测等领域诊断的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c997/12293632/1293f91c4774/biosensors-15-00443-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c997/12293632/29db33161667/biosensors-15-00443-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c997/12293632/e16a76d264b0/biosensors-15-00443-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c997/12293632/c2b46c2b878f/biosensors-15-00443-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c997/12293632/10bfb9daf720/biosensors-15-00443-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c997/12293632/baa0825897c5/biosensors-15-00443-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c997/12293632/8c42dd4ac480/biosensors-15-00443-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c997/12293632/5f0dc310103b/biosensors-15-00443-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c997/12293632/a72adb4c4ad1/biosensors-15-00443-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c997/12293632/1293f91c4774/biosensors-15-00443-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c997/12293632/29db33161667/biosensors-15-00443-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c997/12293632/e16a76d264b0/biosensors-15-00443-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c997/12293632/c2b46c2b878f/biosensors-15-00443-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c997/12293632/10bfb9daf720/biosensors-15-00443-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c997/12293632/baa0825897c5/biosensors-15-00443-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c997/12293632/8c42dd4ac480/biosensors-15-00443-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c997/12293632/5f0dc310103b/biosensors-15-00443-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c997/12293632/a72adb4c4ad1/biosensors-15-00443-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c997/12293632/1293f91c4774/biosensors-15-00443-g009.jpg

相似文献

[1]
Electrochemical Impedance Spectroscopy-Based Biosensors for Label-Free Detection of Pathogens.

Biosensors (Basel). 2025-7-10

[2]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[3]
Optical and Electrochemical Biosensors for Detection of Pathogens Using Metal Nanoclusters: A Systematic Review.

Biosensors (Basel). 2025-7-17

[4]
Systemic Inflammatory Response Syndrome

2025-1

[5]
Short-Term Memory Impairment

2025-1

[6]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[7]
Real-Time Monitoring of Chemisorption of Antibodies onto Self-Assembled Monolayers Deposited on Gold Electrodes Using Electrochemical Impedance Spectroscopy.

Langmuir. 2025-7-1

[8]
Innovations in aptamer-based biosensors for detection of pathogenic bacteria: Recent advances and perspective.

Talanta. 2025-5-14

[9]
Strategic Detection of in the Poultry Industry: Food Safety Challenges, One Health Approaches, and Advances in Biosensor Technologies.

Biosensors (Basel). 2025-7-1

[10]
Creatine kinase in prostate cancer: A biosensor-driven diagnostic paradigm.

Clin Chim Acta. 2025-8-15

本文引用的文献

[1]
β‑Cyclodextrin-Silver Nanoparticles Inclusion Complexes: Insights into Applications in Trace Level Detection (Light-Driven and Electrochemical Assays) and Antibacterial Activity.

ACS Omega. 2025-6-4

[2]
Synthesis of churros-like VSe nanostructures for ultrasensitive electrochemical detection of oxalic acid in urine with portable point-of-care diagnostic devices.

Biosens Bioelectron. 2025-10-1

[3]
Nanomaterial-based biosensors: a new frontier in plant pathogen detection and plant disease management.

Front Bioeng Biotechnol. 2025-4-23

[4]
Synergistic detection of E. coli using ultrathin film of functionalized graphene with impedance spectroscopy and machine learning.

Sci Rep. 2025-4-30

[5]
Interplay of Surface Charge and Pore Characteristics in the Immobilization of Lactate Oxidase on Bulk Nanoporous Gold Electrodes.

Langmuir. 2025-3-4

[6]
Microfluidic biosensors for rapid detection of foodborne pathogenic bacteria: recent advances and future perspectives.

Front Chem. 2025-1-29

[7]
A Cell-Based Electrochemical Biosensor for the Detection of Infectious Hepatitis A Virus.

Biosensors (Basel). 2024-11-27

[8]
Recent advances in nanomaterials for the detection of mycobacterium tuberculosis (Review).

Int J Mol Med. 2025-3

[9]
Rapid and accurate testing for urinary tract infection: new clothes for the emperor.

Clin Microbiol Rev. 2025-3-13

[10]
Graphene electrochemical biosensors combining effervescent solid-phase extraction (ESPE) for rapid, ultrasensitive, and simultaneous determination of DA, AA, and UA.

Biosens Bioelectron. 2025-1-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索