Zhang Huaiwei, Sun Zhuang, Sun Kaiqiang, Liu Quanwang, Chu Wubo, Fu Li, Dai Dan, Liang Zhiqiang, Lin Cheng-Te
College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NlMTE), Chinese Academy of Sciences, Ningbo 315201, China.
Biosensors (Basel). 2025 Jul 10;15(7):443. doi: 10.3390/bios15070443.
The escalating threat of infectious diseases necessitates the development of diagnostic technologies that are not only rapid and sensitive but also deployable at the point of care. Electrochemical impedance spectroscopy (EIS) has emerged as a leading technique for the label-free detection of pathogens, offering a unique combination of sensitivity, non-invasiveness, and adaptability. This review provides a comprehensive overview of the design and application of EIS-based biosensors tailored for pathogen detection, focusing on critical components such as biorecognition elements, electrode materials, nanomaterial integration, and surface immobilization strategies. Special emphasis is placed on the mechanisms of signal generation under Faradaic and non-Faradaic modes and how these underpin performance characteristics such as the limit of detection, specificity, and response time. The application spectrum spans bacterial, viral, fungal, and parasitic pathogens, with case studies highlighting detection in complex matrices such as blood, saliva, food, and environmental water. Furthermore, integration with microfluidics and point-of-care systems is explored as a pathway toward real-world deployment. Emerging strategies for multiplexed detection and the utilization of novel nanomaterials underscore the dynamic evolution of the field. Key challenges-including non-specific binding, matrix effects, the inherently low ΔR/decade sensitivity of impedance transduction, and long-term stability-are critically evaluated alongside recent breakthroughs. This synthesis aims to support the future development of robust, scalable, and user-friendly EIS-based pathogen biosensors with the potential to transform diagnostics across healthcare, food safety, and environmental monitoring.
传染病威胁的不断升级,使得开发不仅快速、灵敏,而且可在护理点使用的诊断技术成为必要。电化学阻抗谱(EIS)已成为用于无标记病原体检测的领先技术,具有灵敏度、非侵入性和适应性的独特组合。本文综述全面概述了针对病原体检测的基于EIS的生物传感器的设计与应用,重点关注生物识别元件、电极材料、纳米材料整合和表面固定策略等关键组件。特别强调了法拉第和非法拉第模式下信号产生的机制,以及这些机制如何支撑检测限、特异性和响应时间等性能特征。其应用范围涵盖细菌、病毒、真菌和寄生虫病原体,案例研究突出了在血液、唾液、食品和环境水等复杂基质中的检测。此外,还探讨了与微流控和护理点系统的集成,作为实现实际应用的途径。多重检测的新兴策略和新型纳米材料的利用凸显了该领域的动态发展。包括非特异性结合、基质效应、阻抗转导固有的低ΔR/十倍频程灵敏度以及长期稳定性在内的关键挑战,与近期的突破一起得到了批判性评估。本综述旨在支持未来开发强大、可扩展且用户友好的基于EIS的病原体生物传感器,其具有变革医疗保健、食品安全和环境监测等领域诊断的潜力。
Biosensors (Basel). 2025-7-10
Arch Ital Urol Androl. 2025-6-30
Biosensors (Basel). 2025-7-17
2025-1
Cochrane Database Syst Rev. 2022-5-20
Clin Chim Acta. 2025-8-15
Front Bioeng Biotechnol. 2025-4-23
Biosensors (Basel). 2024-11-27
Clin Microbiol Rev. 2025-3-13