Suppr超能文献

道路客运企业主动安全状况研究:评估、预测与分析

Research on Active Safety Situation of Road Passenger Transportation Enterprises: Evaluation, Prediction, and Analysis.

作者信息

Zheng Lili, Cao Shiyu, Ding Tongqiang, Tian Jian, Sun Jinghang

机构信息

Transportation College, Jilin University, Changchun 130022, China.

China Academy of Transportation Sciences, Beijing 100029, China.

出版信息

Entropy (Basel). 2024 May 21;26(6):434. doi: 10.3390/e26060434.

Abstract

The road passenger transportation enterprise is a complex system, requiring a clear understanding of their active safety situation (ASS), trends, and influencing factors. This facilitates transportation authorities to promptly receive signals and take effective measures. Through exploratory factor analysis and confirmatory factor analysis, we delved into potential factors for evaluating ASS and extracted an ASS index. To predict obtaining a higher ASS information rate, we compared multiple time series models, including GRU (gated recurrent unit), LSTM (long short-term memory), ARIMA, Prophet, Conv_LSTM, and TCN (temporal convolutional network). This paper proposed the WDA-DBN (water drop algorithm-Deep Belief Network) model and employed DEEPSHAP to identify factors with higher ASS information content. TCN and GRU performed well in the prediction. Compared to the other models, WDA-DBN exhibited the best performance in terms of MSE and MAE. Overall, deep learning models outperform econometric models in terms of information processing. The total time spent processing alarms positively influences ASS, while variables such as fatigue driving occurrences, abnormal driving occurrences, and nighttime driving alarm occurrences have a negative impact on ASS.

摘要

道路客运企业是一个复杂的系统,需要清楚了解其主动安全状况(ASS)、趋势及影响因素。这有助于运输当局及时接收信号并采取有效措施。通过探索性因素分析和验证性因素分析,我们深入研究了评估ASS的潜在因素,并提取了一个ASS指标。为预测获得更高的ASS信息率,我们比较了多个时间序列模型,包括门控循环单元(GRU)、长短期记忆网络(LSTM)、自回归积分滑动平均模型(ARIMA)、先知(Prophet)、卷积长短期记忆网络(Conv_LSTM)和时间卷积网络(TCN)。本文提出了水滴算法-深度信念网络(WDA-DBN)模型,并使用深度夏普力值(DEEPSHAP)来识别具有较高ASS信息含量的因素。TCN和GRU在预测方面表现良好。与其他模型相比,WDA-DBN在均方误差(MSE)和平均绝对误差(MAE)方面表现最佳。总体而言,深度学习模型在信息处理方面优于计量经济模型。处理警报所花费的总时间对ASS有正向影响,而诸如疲劳驾驶发生次数、异常驾驶发生次数和夜间驾驶警报发生次数等变量对ASS有负面影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2dea/11203358/106d538a014f/entropy-26-00434-g001.jpg

相似文献

2
Time series forecasting of new cases and new deaths rate for COVID-19 using deep learning methods.
Results Phys. 2021 Aug;27:104495. doi: 10.1016/j.rinp.2021.104495. Epub 2021 Jun 26.
3
A data-driven hybrid ensemble AI model for COVID-19 infection forecast using multiple neural networks and reinforced learning.
Comput Biol Med. 2022 Jul;146:105560. doi: 10.1016/j.compbiomed.2022.105560. Epub 2022 Apr 27.
4
Research on Indoor Environment Prediction of Pig House Based on OTDBO-TCN-GRU Algorithm.
Animals (Basel). 2024 Mar 11;14(6):863. doi: 10.3390/ani14060863.
5
Traffic flow prediction using bi-directional gated recurrent unit method.
Urban Inform. 2022;1(1):16. doi: 10.1007/s44212-022-00015-z. Epub 2022 Dec 1.
7
Modeling opening price spread of Shanghai Composite Index based on ARIMA-GRU/LSTM hybrid model.
PLoS One. 2024 Mar 13;19(3):e0299164. doi: 10.1371/journal.pone.0299164. eCollection 2024.
8
Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM.
Chaos Solitons Fractals. 2020 Nov;140:110212. doi: 10.1016/j.chaos.2020.110212. Epub 2020 Aug 19.
9
LSTM-TCN: dissolved oxygen prediction in aquaculture, based on combined model of long short-term memory network and temporal convolutional network.
Environ Sci Pollut Res Int. 2022 Jun;29(26):39545-39556. doi: 10.1007/s11356-022-18914-8. Epub 2022 Feb 1.

本文引用的文献

2
A Deep Neural Network Regularization Measure: The Class-Based Decorrelation Method.
Entropy (Basel). 2023 Dec 20;26(1):0. doi: 10.3390/e26010007.
3
The effect of punishment and feedback on correcting erroneous behavior.
J Safety Res. 2023 Dec;87:481-487. doi: 10.1016/j.jsr.2023.09.001. Epub 2023 Sep 15.
4
LLM Multimodal Traffic Accident Forecasting.
Sensors (Basel). 2023 Nov 16;23(22):9225. doi: 10.3390/s23229225.
5
Distance Correlation-Based Feature Selection in Random Forest.
Entropy (Basel). 2023 Aug 23;25(9):1250. doi: 10.3390/e25091250.
6
Time series, seasonality and trend evaluation of 7 years (2015-2021) of OSHA severe injury data.
J Safety Res. 2023 Sep;86:30-38. doi: 10.1016/j.jsr.2023.06.005. Epub 2023 Jun 15.
7
Stock Index Spot-Futures Arbitrage Prediction Using Machine Learning Models.
Entropy (Basel). 2022 Oct 13;24(10):1462. doi: 10.3390/e24101462.
8
Estimation of the completeness of road traffic mortality data in Zambia using a three source capture recapture method.
Accid Anal Prev. 2023 Jun;186:107048. doi: 10.1016/j.aap.2023.107048. Epub 2023 Mar 31.
9
Forecasting time trend of road traffic crashes in Iran using the macro-scale traffic flow characteristics.
Heliyon. 2023 Mar 11;9(3):e14481. doi: 10.1016/j.heliyon.2023.e14481. eCollection 2023 Mar.
10
Understanding the drowsy driving crash patterns from correspondence regression analysis.
J Safety Res. 2023 Feb;84:167-181. doi: 10.1016/j.jsr.2022.10.017. Epub 2022 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验