Department of Genetics, University of Georgia, Athens, GA 30602 USA ; The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN USA.
Biotechnol Biofuels. 2014 Sep 16;7(1):132. doi: 10.1186/s13068-014-0132-8. eCollection 2014.
Members of the thermophilic, anaerobic Gram-positive bacterial genus Caldicellulosiruptor grow optimally at 65 to 78°C and degrade lignocellulosic biomass without conventional pretreatment. Decomposition of complex cell wall polysaccharides is a major bottleneck in the conversion of plant biomass to biofuels and chemicals, and conventional biomass pretreatment includes exposure to high temperatures, acids, or bases as well as enzymatic digestion. Members of this genus contain a variety of glycosyl hydrolases, pectinases, and xylanases, but the contribution of these individual enzymes to biomass deconstruction is largely unknown. C. hydrothermalis is of special interest because it is the least cellulolytic of all the Caldicellulosiruptor species so far characterized, making it an ideal naïve system to study key cellulolytic enzymes from these bacteria.
To develop methods for genetic manipulation of C. hydrothermalis, we selected a spontaneous deletion of pyrF, a gene in the pyrimidine biosynthetic pathway, resulting in a strain that was a uracil auxotroph resistant to 5-fluoroorotic acid (5-FOA). This strain allowed the selection of prototrophic transformants with either replicating or non-replicating plasmids containing the wild-type pyrF gene. Counter-selection of the pyrF wild-type allele on non-replicating vectors allowed the construction of chromosomal deletions. To eliminate integration of the non-replicating plasmid at the pyrF locus in the C. hydrothermalis chromosome, we used the non-homologous Clostridium thermocellum wild-type pyrF allele to complement the C. hydrothermalis pyrF deletion. The autonomously replicating shuttle vector was maintained at 25 to 115 copies per chromosome. Deletion of the ChyI restriction enzyme in C. hydrothermalis increased the transformation efficiency by an order of magnitude and demonstrated the ability to construct deletions and insertions in the genome of this new host.
The use of C. hydrothermalis as a host for homologous and heterologous expression of enzymes important for biomass deconstruction will enable the identification of enzymes that contribute to the special ability of these bacteria to degrade complex lignocellulosic substrates as well as facilitate the construction of strains to improve and extend their substrate utilization capabilities.
嗜热、厌氧革兰氏阳性细菌属 Caldicellulosiruptor 的成员在 65 至 78°C 下生长最佳,并在没有传统预处理的情况下降解木质纤维素生物质。复杂细胞壁多糖的分解是将植物生物质转化为生物燃料和化学品的主要瓶颈,传统的生物质预处理包括暴露于高温、酸或碱以及酶消化。该属的成员含有多种糖苷水解酶、果胶酶和木聚糖酶,但这些单个酶对生物质解构的贡献在很大程度上尚不清楚。C. hydrothermalis 特别有趣,因为它是迄今为止所有表征的 Caldicellulosiruptor 物种中纤维素分解能力最低的一种,使其成为研究这些细菌关键纤维素酶的理想原始系统。
为了开发对 C. hydrothermalis 进行遗传操作的方法,我们选择了嘧啶生物合成途径中的 pyrF 基因的自发缺失,导致该菌株成为对 5-氟乳清酸(5-FOA)具有尿嘧啶营养缺陷型抗性的菌株。该菌株允许使用含有野生型 pyrF 基因的复制或非复制质粒选择原生质体转化体。在非复制载体上对 pyrF 野生型等位基因的反选择允许构建染色体缺失。为了消除非复制质粒在 C. hydrothermalis 染色体上 pyrF 基因座的整合,我们使用非同源的 Clostridium thermocellum 野生型 pyrF 等位基因来补充 C. hydrothermalis pyrF 缺失。自主复制的穿梭载体在每个染色体上维持 25 到 115 个拷贝。在 C. hydrothermalis 中删除 ChyI 限制酶增加了转化效率一个数量级,并证明了在这个新宿主的基因组中构建缺失和插入的能力。
使用 C. hydrothermalis 作为同源和异源表达对生物质解构很重要的酶的宿主,将能够鉴定出有助于这些细菌降解复杂木质纤维素底物的特殊能力的酶,并有助于构建菌株以提高和扩展其底物利用能力。