Department of Chemical and Biomolecular Engineering, North Carolina State University, EB-1, 911 Partners Way, Raleigh, NC, 27695-7905, USA.
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA.
Extremophiles. 2020 Jan;24(1):1-15. doi: 10.1007/s00792-019-01116-5. Epub 2019 Jul 29.
Terrestrial hot springs near neutral pH harbor extremely thermophilic bacteria from the genus Caldicellulosiruptor, which utilize the carbohydrates of lignocellulose for growth. These bacteria are technologically important because they produce novel, multi-domain glycoside hydrolases that are prolific at deconstructing microcrystalline cellulose and hemicelluloses found in plant biomass. Among other interesting features, Caldicellulosiruptor species have successfully adapted to bind specifically to lignocellulosic substrates via surface layer homology (SLH) domains associated with glycoside hydrolases and unique binding proteins (tāpirins) present only in these bacteria. They also utilize a parallel pathway for conversion of glyceraldehyde-3-phosphate into 3-phosphoglycerate via a ferredoxin-dependent oxidoreductase that is conserved across the genus. Advances in the genetic tools for Caldicellulosiruptor bescii, including the development of a high-temperature kanamycin-resistance marker and xylose-inducible promoter, have opened the door for metabolic engineering applications and some progress along these lines has been reported. While several species of Caldicellulosiruptor can readily deconstruct lignocellulose, improvements in the amount of carbohydrate released and in the production of bio-based chemicals are required to successfully realize the biotechnological potential of these organisms.
陆生中性 pH 温泉中蕴藏着极其耐热的卡尔迪克西鲁普托氏菌属(Caldicellulosiruptor)细菌,它们利用木质纤维素的碳水化合物进行生长。这些细菌具有重要的技术意义,因为它们能产生新型的多结构域糖苷水解酶,这些酶在分解微结晶纤维素和植物生物质中的半纤维素方面非常有效。除了其他有趣的特征外,卡尔迪克西鲁普托氏菌属成功地适应了通过与糖苷水解酶相关的表面层同源(SLH)结构域和仅存在于这些细菌中的独特结合蛋白(塔皮林)来特异性结合木质纤维素底物。它们还利用一种平行途径,通过依赖铁氧还蛋白的氧化还原酶将甘油醛-3-磷酸转化为 3-磷酸甘油酸,这种酶在属内是保守的。卡尔迪克西鲁普托氏菌属(Caldicellulosiruptor bescii)的遗传工具的进步,包括高温卡那霉素抗性标记和木糖诱导启动子的开发,为代谢工程应用打开了大门,并且已经取得了一些进展。虽然有几种卡尔迪克西鲁普托氏菌属能够轻易地分解木质纤维素,但需要提高释放的碳水化合物量,并提高生物基化学品的产量,才能成功实现这些生物体的生物技术潜力。