Gilchrist Christopher L, Ruch David S, Little Dianne, Guilak Farshid
Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA.
Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
Biomaterials. 2014 Dec;35(38):10015-24. doi: 10.1016/j.biomaterials.2014.08.047. Epub 2014 Sep 26.
Tissue and biomaterial microenvironments provide architectural cues that direct important cell behaviors including cell shape, alignment, migration, and resulting tissue formation. These architectural features may be presented to cells across multiple length scales, from nanometers to millimeters in size. In this study, we examined how architectural cues at two distinctly different length scales, "micro-scale" cues on the order of ∼1-2 μm, and "meso-scale" cues several orders of magnitude larger (>100 μm), interact to direct aligned neo-tissue formation. Utilizing a micro-photopatterning (μPP) model system to precisely arrange cell-adhesive patterns, we examined the effects of substrate architecture at these length scales on human mesenchymal stem cell (hMSC) organization, gene expression, and fibrillar collagen deposition. Both micro- and meso-scale architectures directed cell alignment and resulting tissue organization, and when combined, meso cues could enhance or compete against micro-scale cues. As meso boundary aspect ratios were increased, meso-scale cues overrode micro-scale cues and controlled tissue alignment, with a characteristic critical width (∼500 μm) similar to boundary dimensions that exist in vivo in highly aligned tissues. Meso-scale cues acted via both lateral confinement (in a cell-density-dependent manner) and by permitting end-to-end cell arrangements that yielded greater fibrillar collagen deposition. Despite large differences in fibrillar collagen content and organization between μPP architectural conditions, these changes did not correspond with changes in gene expression of key matrix or tendon-related genes. These findings highlight the complex interplay between geometric cues at multiple length scales and may have implications for tissue engineering strategies, where scaffold designs that incorporate cues at multiple length scales could improve neo-tissue organization and resulting functional outcomes.
组织和生物材料微环境提供了引导重要细胞行为的结构线索,这些行为包括细胞形状、排列、迁移以及由此产生的组织形成。这些结构特征可以在从纳米到毫米大小的多个长度尺度上呈现给细胞。在本研究中,我们研究了两个截然不同的长度尺度上的结构线索,即约1 - 2μm量级的“微观尺度”线索和大几个数量级(>100μm)的“中观尺度”线索,如何相互作用以引导排列的新组织形成。利用微光刻图案化(μPP)模型系统精确排列细胞粘附图案,我们研究了这些长度尺度下的底物结构对人间充质干细胞(hMSC)组织、基因表达和纤维状胶原蛋白沉积的影响。微观和中观尺度的结构都能引导细胞排列和由此产生的组织组织,并且当两者结合时,中观线索可以增强或与微观尺度线索竞争。随着中观边界长宽比的增加,中观尺度线索超越微观尺度线索并控制组织排列,其特征临界宽度(约500μm)类似于体内高度排列组织中存在的边界尺寸。中观尺度线索通过横向限制(以细胞密度依赖的方式)和允许端对端的细胞排列起作用,从而产生更多的纤维状胶原蛋白沉积。尽管μPP结构条件下纤维状胶原蛋白含量和组织存在很大差异,但这些变化与关键基质或肌腱相关基因的基因表达变化并不对应。这些发现突出了多个长度尺度上几何线索之间的复杂相互作用,并且可能对组织工程策略有影响,在组织工程策略中,纳入多个长度尺度线索的支架设计可以改善新组织组织和由此产生的功能结果。