Suppr超能文献

基于伪标签自组织映射的磁共振脑组织结构分割。

Pseudo-Label-Assisted Self-Organizing Maps for Brain Tissue Segmentation in Magnetic Resonance Imaging.

机构信息

National Institute for Astrophysics, Optics and Electronics, Puebla, Mexico.

出版信息

J Digit Imaging. 2022 Apr;35(2):180-192. doi: 10.1007/s10278-021-00557-9. Epub 2022 Jan 11.

Abstract

Brain tissue segmentation in magnetic resonance imaging volumes is an important image processing step for analyzing the human brain. This paper presents a novel approach named Pseudo-Label Assisted Self-Organizing Map (PLA-SOM) that enhances the result produced by a base segmentation method. Using the output of a base method, PLA-SOM calculates pseudo-labels in order to keep inter-class separation and intra-class compactness in the training phase. For the mapping phase, PLA-SOM uses a novel fuzzy function that combines feature space learned by the SOM's prototypes, topological ordering from the map, and spatial information from a brain atlas. We assessed PLA-SOM performance on synthetic and real MRIs of the brain, obtained from the BrainWeb and the Internet Brain Image Repository datasets. The experimental results showed evidence of segmentation improvement achieved by the proposed method over six different base methods. The best segmentation improvements reported by PLA-SOM on synthetic brain scans are 11%, 6%, and 4% for the tissue classes cerebrospinal fluid, gray matter, and white matter, respectively. On real brain scans, PLA-SOM achieved segmentation enhancements of 15%, 5%, and 12% for cerebrospinal fluid, gray matter, and white matter, respectively.

摘要

磁共振成像体积中的脑组织分割是分析人脑的重要图像处理步骤。本文提出了一种名为伪标签辅助自组织映射(PLA-SOM)的新方法,该方法增强了基础分割方法的结果。使用基础方法的输出,PLA-SOM 计算伪标签,以保持训练阶段的类间分离和类内紧凑性。在映射阶段,PLA-SOM 使用一种新的模糊函数,该函数结合了 SOM 原型学习的特征空间、来自映射的拓扑排序以及大脑图谱的空间信息。我们评估了 PLA-SOM 在来自 BrainWeb 和互联网大脑图像库数据集的合成和真实 MRI 上的性能。实验结果表明,与六种不同的基础方法相比,所提出的方法在分割方面有所改进。PLA-SOM 在合成脑扫描中报告的最佳分割改进分别为脑脊液、灰质和白质组织类别的 11%、6%和 4%。在真实的大脑扫描中,PLA-SOM 分别实现了脑脊液、灰质和白质组织类别的 15%、5%和 12%的分割增强。

相似文献

1
Pseudo-Label-Assisted Self-Organizing Maps for Brain Tissue Segmentation in Magnetic Resonance Imaging.
J Digit Imaging. 2022 Apr;35(2):180-192. doi: 10.1007/s10278-021-00557-9. Epub 2022 Jan 11.
2
Segmentation of MRI brain scans using spatial constraints and 3D features.
Med Biol Eng Comput. 2020 Dec;58(12):3101-3112. doi: 10.1007/s11517-020-02270-1. Epub 2020 Nov 5.
3
A segmentation of brain MRI images utilizing intensity and contextual information by Markov random field.
Comput Assist Surg (Abingdon). 2017 Dec;22(sup1):200-211. doi: 10.1080/24699322.2017.1389398. Epub 2017 Oct 26.
4
Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
Med Phys. 2016 Dec;43(12):6588-6597. doi: 10.1118/1.4967487.
7
Brain tissue segmentation using improved kernelized rough-fuzzy C-means with spatio-contextual information from MRI.
Magn Reson Imaging. 2019 Oct;62:129-151. doi: 10.1016/j.mri.2019.06.010. Epub 2019 Jun 25.
8
A Unified Framework for Brain Segmentation in MR Images.
Comput Math Methods Med. 2015;2015:829893. doi: 10.1155/2015/829893. Epub 2015 May 18.
9
Spatial Fuzzy C Means and Expectation Maximization Algorithms with Bias Correction for Segmentation of MR Brain Images.
J Med Syst. 2017 Jan;41(1):15. doi: 10.1007/s10916-016-0662-7. Epub 2016 Dec 13.
10
Vervet MRI atlas and label map for fully automated morphometric analyses.
Neuroinformatics. 2014 Oct;12(4):543-50. doi: 10.1007/s12021-014-9231-8.

本文引用的文献

1
Deep learning based segmentation of brain tissue from diffusion MRI.
Neuroimage. 2021 Jun;233:117934. doi: 10.1016/j.neuroimage.2021.117934. Epub 2021 Mar 16.
2
Segmentation of MRI brain scans using spatial constraints and 3D features.
Med Biol Eng Comput. 2020 Dec;58(12):3101-3112. doi: 10.1007/s11517-020-02270-1. Epub 2020 Nov 5.
3
Sparse representation of DWI images for fully automated brain tissue segmentation.
J Neurosci Methods. 2020 Sep 1;343:108828. doi: 10.1016/j.jneumeth.2020.108828. Epub 2020 Jun 27.
4
Automatic Labeling of MR Brain Images Through the Hashing Retrieval Based Atlas Forest.
J Med Syst. 2019 Jun 21;43(8):241. doi: 10.1007/s10916-019-1385-3.
5
A Novel Distributed Multitask Fuzzy Clustering Algorithm for Automatic MR Brain Image Segmentation.
J Med Syst. 2019 Mar 25;43(5):118. doi: 10.1007/s10916-019-1245-1.
6
Delineation of the ischemic stroke lesion based on watershed and relative fuzzy connectedness in brain MRI.
Med Biol Eng Comput. 2018 May;56(5):795-807. doi: 10.1007/s11517-017-1726-7. Epub 2017 Sep 26.
7
A review on automatic fetal and neonatal brain MRI segmentation.
Neuroimage. 2018 Apr 15;170:231-248. doi: 10.1016/j.neuroimage.2017.06.074. Epub 2017 Jun 28.
8
Spatial Fuzzy C Means and Expectation Maximization Algorithms with Bias Correction for Segmentation of MR Brain Images.
J Med Syst. 2017 Jan;41(1):15. doi: 10.1007/s10916-016-0662-7. Epub 2016 Dec 13.
9
3D cerebral MR image segmentation using multiple-classifier system.
Med Biol Eng Comput. 2017 Mar;55(3):353-364. doi: 10.1007/s11517-016-1483-z. Epub 2016 May 20.
10
Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool.
BMC Med Imaging. 2015 Aug 12;15:29. doi: 10.1186/s12880-015-0068-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验