Suppr超能文献

单自旋随机光学重构显微镜。

Single-spin stochastic optical reconstruction microscopy.

机构信息

Third Institute of Physics, Stuttgart Research Center of Photonic Engineering and Center for Integrated Quantum Science, University of Stuttgart, 70550 Stuttgart, Germany.

Third Institute of Physics, Stuttgart Research Center of Photonic Engineering and Center for Integrated Quantum Science, University of Stuttgart, 70550 Stuttgart, Germany

出版信息

Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14669-74. doi: 10.1073/pnas.1404907111. Epub 2014 Sep 29.

Abstract

We experimentally demonstrate precision addressing of single-quantum emitters by combined optical microscopy and spin resonance techniques. To this end, we use nitrogen vacancy (NV) color centers in diamond confined within a few ten nanometers as individually resolvable quantum systems. By developing a stochastic optical reconstruction microscopy (STORM) technique for NV centers, we are able to simultaneously perform sub-diffraction-limit imaging and optically detected spin resonance (ODMR) measurements on NV spins. This allows the assignment of spin resonance spectra to individual NV center locations with nanometer-scale resolution and thus further improves spatial discrimination. For example, we resolved formerly indistinguishable emitters by their spectra. Furthermore, ODMR spectra contain metrology information allowing for sub-diffraction-limit sensing of, for instance, magnetic or electric fields with inherently parallel data acquisition. As an example, we have detected nuclear spins with nanometer-scale precision. Finally, we give prospects of how this technique can evolve into a fully parallel quantum sensor for nanometer resolution imaging of delocalized quantum correlations.

摘要

我们通过结合光学显微镜和自旋共振技术,实验性地证明了对单量子发射器的精确寻址。为此,我们使用了直径为几十纳米的钻石中的氮空位(NV)色心作为可单独分辨的量子系统。通过开发用于 NV 中心的随机光学重建显微镜(STORM)技术,我们能够在 NV 自旋上同时进行亚衍射极限成像和光学探测自旋共振(ODMR)测量。这允许将自旋共振谱分配给具有纳米级分辨率的单个 NV 中心位置,从而进一步提高空间分辨能力。例如,我们通过它们的光谱分辨出以前无法分辨的发射器。此外,ODMR 光谱包含计量信息,允许对磁场或电场进行亚衍射极限的感应,同时具有固有并行的数据采集。例如,我们已经以纳米级的精度检测到了核自旋。最后,我们给出了这项技术如何发展成为用于局域量子相关的纳米分辨率成像的全并行量子传感器的前景。

相似文献

1
Single-spin stochastic optical reconstruction microscopy.
Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14669-74. doi: 10.1073/pnas.1404907111. Epub 2014 Sep 29.
2
Spin-manipulated nanoscopy for single nitrogen-vacancy center localizations in nanodiamonds.
Light Sci Appl. 2017 Nov 3;6(11):e17085. doi: 10.1038/lsa.2017.85. eCollection 2017 Nov.
3
Hyperfine Interactions in the NV-C Quantum Registers in Diamond Grown from the Azaadamantane Seed.
Nanomaterials (Basel). 2021 May 14;11(5):1303. doi: 10.3390/nano11051303.
4
Superresolution optical magnetic imaging and spectroscopy using individual electronic spins in diamond.
Opt Express. 2017 May 15;25(10):11048-11064. doi: 10.1364/OE.25.011048.
5
Quantum interpolation for high-resolution sensing.
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2149-2153. doi: 10.1073/pnas.1610835114. Epub 2017 Feb 14.
6
Determination of the Three-Dimensional Magnetic Field Vector Orientation with Nitrogen Vacany Centers in Diamond.
Nano Lett. 2020 May 13;20(5):2980-2985. doi: 10.1021/acs.nanolett.9b04725. Epub 2020 Apr 30.
7
All-optical nuclear quantum sensing using nitrogen-vacancy centers in diamond.
npj Quantum Inf. 2023;9(1):56. doi: 10.1038/s41534-023-00724-6. Epub 2023 Jun 10.
8
Calibration-Free Vector Magnetometry Using Nitrogen-Vacancy Center in Diamond Integrated with Optical Vortex Beam.
Nano Lett. 2020 Nov 11;20(11):8267-8272. doi: 10.1021/acs.nanolett.0c03377. Epub 2020 Nov 2.
9
Sub-second temporal magnetic field microscopy using quantum defects in diamond.
Sci Rep. 2022 May 24;12(1):8743. doi: 10.1038/s41598-022-12609-3.
10
Monodisperse Five-Nanometer-Sized Detonation Nanodiamonds Enriched in Nitrogen-Vacancy Centers.
ACS Nano. 2019 Jun 25;13(6):6461-6468. doi: 10.1021/acsnano.8b09383. Epub 2019 May 29.

引用本文的文献

1
Reversible optical data storage below the diffraction limit.
Nat Nanotechnol. 2024 Feb;19(2):202-207. doi: 10.1038/s41565-023-01542-9. Epub 2023 Dec 4.
2
Widefield Diamond Quantum Sensing with Neuromorphic Vision Sensors.
Adv Sci (Weinh). 2024 Jan;11(2):e2304355. doi: 10.1002/advs.202304355. Epub 2023 Nov 8.
3
Multiple Bioimaging Applications Based on the Excellent Properties of Nanodiamond: A Review.
Molecules. 2023 May 12;28(10):4063. doi: 10.3390/molecules28104063.
4
Distance measurements between 5 nanometer diamonds - single particle magnetic resonance or optical super-resolution imaging?
Nanoscale Adv. 2023 Jan 24;5(5):1345-1355. doi: 10.1039/d2na00815g. eCollection 2023 Feb 28.
5
Scalable and Tunable Diamond Nanostructuring Process for Nanoscale NMR Applications.
ACS Omega. 2022 Aug 24;7(35):31544-31550. doi: 10.1021/acsomega.2c04250. eCollection 2022 Sep 6.
6
Self-Assembly of Nanodiamonds and Plasmonic Nanoparticles for Nanoscopy.
Biosensors (Basel). 2022 Feb 28;12(3):148. doi: 10.3390/bios12030148.
7
Synthesis, Characterization, Properties, and Novel Applications of Fluorescent Nanodiamonds.
J Fluoresc. 2022 May;32(3):863-885. doi: 10.1007/s10895-022-02898-2. Epub 2022 Mar 1.
8
Research Progress and Application of Bioorthogonal Reactions in Biomolecular Analysis and Disease Diagnosis.
Top Curr Chem (Cham). 2021 Sep 29;379(6):39. doi: 10.1007/s41061-021-00352-8.
9
Ground-State Depletion Nanoscopy of Nitrogen-Vacancy Centres in Nanodiamonds.
Nanoscale Res Lett. 2021 Mar 10;16(1):44. doi: 10.1186/s11671-021-03503-4.
10
Optically pumped spin polarization as a probe of many-body thermalization.
Sci Adv. 2020 May 1;6(18). doi: 10.1126/sciadv.aaz6986. Print 2020 May.

本文引用的文献

1
Nanoscale nuclear magnetic imaging with chemical contrast.
Nat Nanotechnol. 2015 Feb;10(2):125-8. doi: 10.1038/nnano.2014.299. Epub 2015 Jan 5.
2
Nanoscale detection of a single fundamental charge in ambient conditions using the NV- center in diamond.
Phys Rev Lett. 2014 Mar 7;112(9):097603. doi: 10.1103/PhysRevLett.112.097603. Epub 2014 Mar 3.
3
Electronic properties and metrology applications of the diamond NV- center under pressure.
Phys Rev Lett. 2014 Jan 31;112(4):047601. doi: 10.1103/PhysRevLett.112.047601.
4
Quantum error correction in a solid-state hybrid spin register.
Nature. 2014 Feb 13;506(7487):204-7. doi: 10.1038/nature12919.
5
Mechanical spin control of nitrogen-vacancy centers in diamond.
Phys Rev Lett. 2013 Nov 27;111(22):227602. doi: 10.1103/PhysRevLett.111.227602.
7
Nanometre-scale thermometry in a living cell.
Nature. 2013 Aug 1;500(7460):54-8. doi: 10.1038/nature12373.
8
Stray-field imaging of magnetic vortices with a single diamond spin.
Nat Commun. 2013;4:2279. doi: 10.1038/ncomms3279.
9
High-precision nanoscale temperature sensing using single defects in diamond.
Nano Lett. 2013 Jun 12;13(6):2738-42. doi: 10.1021/nl401216y.
10
Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond.
Proc Natl Acad Sci U S A. 2013 May 21;110(21):8417-21. doi: 10.1073/pnas.1306825110. Epub 2013 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验