Third Institute of Physics, Stuttgart Research Center of Photonic Engineering and Center for Integrated Quantum Science, University of Stuttgart, 70550 Stuttgart, Germany.
Third Institute of Physics, Stuttgart Research Center of Photonic Engineering and Center for Integrated Quantum Science, University of Stuttgart, 70550 Stuttgart, Germany
Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14669-74. doi: 10.1073/pnas.1404907111. Epub 2014 Sep 29.
We experimentally demonstrate precision addressing of single-quantum emitters by combined optical microscopy and spin resonance techniques. To this end, we use nitrogen vacancy (NV) color centers in diamond confined within a few ten nanometers as individually resolvable quantum systems. By developing a stochastic optical reconstruction microscopy (STORM) technique for NV centers, we are able to simultaneously perform sub-diffraction-limit imaging and optically detected spin resonance (ODMR) measurements on NV spins. This allows the assignment of spin resonance spectra to individual NV center locations with nanometer-scale resolution and thus further improves spatial discrimination. For example, we resolved formerly indistinguishable emitters by their spectra. Furthermore, ODMR spectra contain metrology information allowing for sub-diffraction-limit sensing of, for instance, magnetic or electric fields with inherently parallel data acquisition. As an example, we have detected nuclear spins with nanometer-scale precision. Finally, we give prospects of how this technique can evolve into a fully parallel quantum sensor for nanometer resolution imaging of delocalized quantum correlations.
我们通过结合光学显微镜和自旋共振技术,实验性地证明了对单量子发射器的精确寻址。为此,我们使用了直径为几十纳米的钻石中的氮空位(NV)色心作为可单独分辨的量子系统。通过开发用于 NV 中心的随机光学重建显微镜(STORM)技术,我们能够在 NV 自旋上同时进行亚衍射极限成像和光学探测自旋共振(ODMR)测量。这允许将自旋共振谱分配给具有纳米级分辨率的单个 NV 中心位置,从而进一步提高空间分辨能力。例如,我们通过它们的光谱分辨出以前无法分辨的发射器。此外,ODMR 光谱包含计量信息,允许对磁场或电场进行亚衍射极限的感应,同时具有固有并行的数据采集。例如,我们已经以纳米级的精度检测到了核自旋。最后,我们给出了这项技术如何发展成为用于局域量子相关的纳米分辨率成像的全并行量子传感器的前景。