Ajoy Ashok, Liu Yi-Xiang, Saha Kasturi, Marseglia Luca, Jaskula Jean-Christophe, Bissbort Ulf, Cappellaro Paola
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139.
Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2149-2153. doi: 10.1073/pnas.1610835114. Epub 2017 Feb 14.
Recent advances in engineering and control of nanoscale quantum sensors have opened new paradigms in precision metrology. Unfortunately, hardware restrictions often limit the sensor performance. In nanoscale magnetic resonance probes, for instance, finite sampling times greatly limit the achievable sensitivity and spectral resolution. Here we introduce a technique for coherent quantum interpolation that can overcome these problems. Using a quantum sensor associated with the nitrogen vacancy center in diamond, we experimentally demonstrate that quantum interpolation can achieve spectroscopy of classical magnetic fields and individual quantum spins with orders of magnitude finer frequency resolution than conventionally possible. Not only is quantum interpolation an enabling technique to extract structural and chemical information from single biomolecules, but it can be directly applied to other quantum systems for superresolution quantum spectroscopy.
纳米级量子传感器在工程和控制方面的最新进展为精密计量学开辟了新的范例。不幸的是,硬件限制常常会限制传感器的性能。例如,在纳米级磁共振探针中,有限的采样时间极大地限制了可实现的灵敏度和光谱分辨率。在此,我们介绍一种相干量子插值技术,它可以克服这些问题。利用与金刚石中的氮空位中心相关联的量子传感器,我们通过实验证明,量子插值能够实现对经典磁场和单个量子自旋的光谱分析,其频率分辨率比传统方法高出几个数量级。量子插值不仅是从单个生物分子中提取结构和化学信息的一项赋能技术,而且它还可以直接应用于其他量子系统以实现超分辨率量子光谱分析。