Gierse Martin, Marshall Alastair, Qureshi M Usman, Scharpf Jochen, Parker Anna J, Hausmann Birgit J M, Walther Paul, Bleszynski Jayich Ania C, Jelezko Fedor, Neumann Philipp, Schwartz Ilai
NVision Imaging Technologies GmbH, 89081 Ulm, Germany.
Institute for Quantum Optics, Ulm University, 89081 Ulm, Germany.
ACS Omega. 2022 Aug 24;7(35):31544-31550. doi: 10.1021/acsomega.2c04250. eCollection 2022 Sep 6.
Nanostructuring of a bulk material is used to change its mechanical, optical, and electronic properties and to enable many new applications. We present a scalable fabrication technique that enables the creation of densely packed diamond nanopillars for quantum technology applications. The process yields tunable feature sizes without the employment of lithographic techniques. High-aspect-ratio pillars are created through oxygen-plasma etching of diamond with a dewetted palladium film as an etch mask. We demonstrate an iterative renewal of the palladium etch mask, by which the initial mask thickness is not the limiting factor for the etch depth. Following the process, 300-400 million densely packed 100 nm wide and 1 μm tall diamond pillars were created on a 3 × 3 mm diamond sample. The fabrication technique is tailored specifically to enable applications and research involving quantum coherent defect center spins in diamond, such as nitrogen-vacancy (NV) centers, which are widely used in quantum science and engineering. To demonstrate the compatibility of our technique with quantum sensing, NV centers are created in the nanopillar sidewalls and are used to sense H nuclei in liquid wetting the nanostructured surface. This nanostructuring process is an important element for enabling the wide-scale implementation of NV-driven magnetic resonance imaging or NV-driven NMR.
块状材料的纳米结构化用于改变其机械、光学和电子特性,并实现许多新的应用。我们提出了一种可扩展的制造技术,能够制造用于量子技术应用的密集排列的金刚石纳米柱。该工艺无需使用光刻技术即可产生可调的特征尺寸。通过以去湿钯膜作为蚀刻掩膜对金刚石进行氧等离子体蚀刻来制造高纵横比的柱体。我们展示了钯蚀刻掩膜的迭代更新,通过这种方式,初始掩膜厚度不是蚀刻深度的限制因素。按照该工艺,在一个3×3毫米的金刚石样品上制造了3亿到4亿个密集排列、宽100纳米、高1微米的金刚石柱。该制造技术是专门为涉及金刚石中量子相干缺陷中心自旋的应用和研究而定制的,例如氮空位(NV)中心,其在量子科学和工程中被广泛使用。为了证明我们的技术与量子传感的兼容性,在纳米柱侧壁中创建了NV中心,并用于检测润湿纳米结构表面的液体中的氢核。这种纳米结构化工艺是实现NV驱动的磁共振成像或NV驱动的核磁共振广泛应用的一个重要因素。