Suppr超能文献

鸣禽神经生物学大规模分子方法的机遇与挑战。

The opportunities and challenges of large-scale molecular approaches to songbird neurobiology.

作者信息

Mello C V, Clayton D F

机构信息

Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239-3098, USA.

Division of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.

出版信息

Neurosci Biobehav Rev. 2015 Mar;50:70-6. doi: 10.1016/j.neubiorev.2014.09.017. Epub 2014 Oct 2.

Abstract

High-throughput methods for analyzing genome structure and function are having a large impact in songbird neurobiology. Methods include genome sequencing and annotation, comparative genomics, DNA microarrays and transcriptomics, and the development of a brain atlas of gene expression. Key emerging findings include the identification of complex transcriptional programs active during singing, the robust brain expression of non-coding RNAs, evidence of profound variations in gene expression across brain regions, and the identification of molecular specializations within song production and learning circuits. Current challenges include the statistical analysis of large datasets, effective genome curations, the efficient localization of gene expression changes to specific neuronal circuits and cells, and the dissection of behavioral and environmental factors that influence brain gene expression. The field requires efficient methods for comparisons with organisms like chicken, which offer important anatomical, functional and behavioral contrasts. As sequencing costs plummet, opportunities emerge for comparative approaches that may help reveal evolutionary transitions contributing to vocal learning, social behavior and other properties that make songbirds such compelling research subjects.

摘要

用于分析基因组结构和功能的高通量方法正在对鸣禽神经生物学产生重大影响。这些方法包括基因组测序与注释、比较基因组学、DNA微阵列和转录组学,以及基因表达脑图谱的绘制。新出现的关键发现包括识别唱歌过程中活跃的复杂转录程序、非编码RNA在大脑中的强烈表达、大脑区域间基因表达存在显著差异的证据,以及在发声产生和学习回路中识别分子特化现象。当前面临的挑战包括对大型数据集的统计分析、有效的基因组管理、将基因表达变化高效定位到特定神经元回路和细胞,以及剖析影响大脑基因表达的行为和环境因素。该领域需要有效的方法来与鸡等生物进行比较,鸡能提供重要的解剖学、功能和行为方面的对比。随着测序成本大幅下降,比较方法的机会出现了,这可能有助于揭示促成发声学习、社会行为以及使鸣禽成为极具吸引力的研究对象的其他特性的进化转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bc6/4355393/fe82d94b254b/nihms636702f1.jpg

相似文献

7
The genomics of memory and learning in songbirds.鸣禽记忆和学习的基因组学。
Annu Rev Genomics Hum Genet. 2013;14:45-65. doi: 10.1146/annurev-genom-090711-163809. Epub 2013 Jul 22.
9
Birdsong as a window into language origins and evolutionary neuroscience.鸟鸣作为语言起源和进化神经科学的窗口。
Philos Trans R Soc Lond B Biol Sci. 2020 Jan 6;375(1789):20190060. doi: 10.1098/rstb.2019.0060. Epub 2019 Nov 18.

引用本文的文献

3
Inside the supergene of the bird with four sexes.在具有四种性别的鸟类的超级基因内。
Horm Behav. 2020 Nov;126:104850. doi: 10.1016/j.yhbeh.2020.104850. Epub 2020 Sep 19.
6
Grand and Less Grand Challenges in Avian Physiology.鸟类生理学中的重大与次重大挑战
Front Physiol. 2017 Apr 19;8:222. doi: 10.3389/fphys.2017.00222. eCollection 2017.

本文引用的文献

3
A single-molecule long-read survey of the human transcriptome.人类转录组的单分子长读长测序研究。
Nat Biotechnol. 2013 Nov;31(11):1009-14. doi: 10.1038/nbt.2705. Epub 2013 Oct 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验