Beaussart Audrey, Baker Amy E, Kuchma Sherry L, El-Kirat-Chatel Sofiane, O'Toole George A, Dufrêne Yves F
Institute of Life Sciences, Université catholique de Louvain , Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium.
ACS Nano. 2014 Oct 28;8(10):10723-33. doi: 10.1021/nn5044383. Epub 2014 Oct 6.
A variety of bacterial pathogens use nanoscale protein fibers called type IV pili to mediate cell adhesion, a primary step leading to infection. Currently, how these nanofibers respond to mechanical stimuli and how this response is used to control adhesion is poorly understood. Here, we use atomic force microscopy techniques to quantify the forces guiding the adhesion of Pseudomonas aeruginosa type IV pili to surfaces. Using chemical force microscopy and single-cell force spectroscopy, we show that pili strongly bind to hydrophobic surfaces in a time-dependent manner, while they weakly bind to hydrophilic surfaces. Individual nanofibers are capable of withstanding forces up to 250 pN, thereby explaining how they can resist mechanical stress. Pulling on individual pili yields constant force plateaus, presumably reflecting conformational changes, as well as nanospring properties that may help bacteria to withstand physiological shear forces. Analysis of mutant strains demonstrates that these mechanical responses originate solely from type IV pili, while flagella and the cell surface localized and proposed pili-associated adhesin PilY1 play no direct role. We also demonstrate that bacterial-host interactions involve constant force plateaus, the extension of bacterial pili, and the formation of membrane tethers from host cells. We postulate that the unique mechanical responses of type IV pili unravelled here enable the bacteria to firmly attach to biotic and abiotic surfaces and thus maintain attachment when subjected to high shear forces under physiological conditions, helping to explain why pili play a critical role in colonization of the host.
多种细菌病原体利用名为IV型菌毛的纳米级蛋白质纤维来介导细胞粘附,这是导致感染的首要步骤。目前,人们对这些纳米纤维如何响应机械刺激以及这种响应如何用于控制粘附了解甚少。在这里,我们使用原子力显微镜技术来量化引导铜绿假单胞菌IV型菌毛与表面粘附的力。通过化学力显微镜和单细胞力谱,我们表明菌毛以时间依赖性方式强烈结合到疏水表面,而它们与亲水表面的结合较弱。单个纳米纤维能够承受高达250皮牛的力,从而解释了它们如何能够抵抗机械应力。拉动单个菌毛会产生恒定的力平台,这可能反映了构象变化以及可能帮助细菌承受生理剪切力的纳米弹簧特性。对突变菌株的分析表明,这些机械响应仅源于IV型菌毛,而鞭毛以及细胞表面定位的、被认为与菌毛相关的粘附素PilY1没有直接作用。我们还证明细菌与宿主的相互作用涉及恒定的力平台、细菌菌毛的伸展以及宿主细胞膜系链的形成。我们推测,这里揭示的IV型菌毛独特的机械响应使细菌能够牢固地附着在生物和非生物表面上,从而在生理条件下受到高剪切力时保持附着,这有助于解释为什么菌毛在宿主定殖中起关键作用。