Suppr超能文献

实时荧光图像引导的肿瘤手术。

Real-time fluorescence image-guided oncologic surgery.

作者信息

Mondal Suman B, Gao Shengkui, Zhu Nan, Liang Rongguang, Gruev Viktor, Achilefu Samuel

机构信息

Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA.

Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, USA.

出版信息

Adv Cancer Res. 2014;124:171-211. doi: 10.1016/B978-0-12-411638-2.00005-7.

Abstract

Medical imaging plays a critical role in cancer diagnosis and planning. Many of these patients rely on surgical intervention for curative outcomes. This requires a careful identification of the primary and microscopic tumors, and the complete removal of cancer. Although there have been efforts to adapt traditional-imaging modalities for intraoperative image guidance, they suffer from several constraints such as large hardware footprint, high-operation cost, and disruption of the surgical workflow. Because of the ease of image acquisition, relatively low-cost devices and intuitive operation, optical imaging methods have received tremendous interests for use in real-time image-guided surgery. To improve imaging depth under low interference by tissue autofluorescence, many of these applications utilize light in the near-infrared (NIR) wavelengths, which is invisible to human eyes. With the availability of a wide selection of tumor-avid contrast agents, advancements in imaging sensors, electronic and optical designs, surgeons are able to combine different attributes of NIR optical imaging techniques to improve treatment outcomes. The emergence of diverse commercial and experimental image guidance systems, which are in various stages of clinical translation, attests to the potential high impact of intraoperative optical imaging methods to improve speed of oncologic surgery with high accuracy and minimal margin positivity.

摘要

医学成像在癌症诊断和治疗规划中起着关键作用。许多此类患者依靠手术干预来实现治愈效果。这需要仔细识别原发性和微小肿瘤,并彻底切除癌症。尽管人们一直在努力使传统成像方式适用于术中图像引导,但它们存在一些限制,如硬件占地面积大、操作成本高以及扰乱手术流程。由于图像采集简便、设备成本相对较低且操作直观,光学成像方法在实时图像引导手术中的应用受到了极大关注。为了在组织自发荧光的低干扰下提高成像深度,许多此类应用使用人眼不可见的近红外(NIR)波长的光。随着多种肿瘤亲和性造影剂的出现、成像传感器、电子和光学设计的进步,外科医生能够结合近红外光学成像技术的不同特性来改善治疗效果。处于临床转化不同阶段的各种商业和实验性图像引导系统的出现,证明了术中光学成像方法在提高肿瘤手术速度、实现高精度和最小切缘阳性率方面具有潜在的重大影响。

相似文献

1
Real-time fluorescence image-guided oncologic surgery.
Adv Cancer Res. 2014;124:171-211. doi: 10.1016/B978-0-12-411638-2.00005-7.
3
Hands-free, wireless goggles for near-infrared fluorescence and real-time image-guided surgery.
Surgery. 2011 May;149(5):689-98. doi: 10.1016/j.surg.2011.02.007.
5
Oncologic Procedures Amenable to Fluorescence-guided Surgery.
Ann Surg. 2017 Jul;266(1):36-47. doi: 10.1097/SLA.0000000000002127.
6
Image-guided cancer surgery using near-infrared fluorescence.
Nat Rev Clin Oncol. 2013 Sep;10(9):507-18. doi: 10.1038/nrclinonc.2013.123. Epub 2013 Jul 23.
7
Near-infrared fluorescence-guided resection of colorectal liver metastases.
Cancer. 2013 Sep 15;119(18):3411-8. doi: 10.1002/cncr.28203. Epub 2013 Jun 21.
8
Precision Surgery Guided by Intraoperative Molecular Imaging.
J Nucl Med. 2022 Nov;63(11):1620-1627. doi: 10.2967/jnumed.121.263409. Epub 2022 Aug 11.
9
A Tumor-Activatable Theranostic Nanomedicine Platform for NIR Fluorescence-Guided Surgery and Combinatorial Phototherapy.
Theranostics. 2018 Jan 1;8(3):767-784. doi: 10.7150/thno.21209. eCollection 2018.
10
Optical See-Through Cancer Vision Goggles Enable Direct Patient Visualization and Real-Time Fluorescence-Guided Oncologic Surgery.
Ann Surg Oncol. 2017 Jul;24(7):1897-1903. doi: 10.1245/s10434-017-5804-8. Epub 2017 Feb 17.

引用本文的文献

2
Engineering Bacterial Secretion Systems for Enhanced Tumor Imaging and Surgical Guidance.
Adv Mater. 2025 May 21:e2504389. doi: 10.1002/adma.202504389.
3
Freezing-Activated Covalent Organic Frameworks for Precise Fluorescence Cryo-Imaging of Cancer Tissue.
J Am Chem Soc. 2025 Mar 12;147(10):8188-8204. doi: 10.1021/jacs.4c13848. Epub 2025 Feb 27.
4
Milk Exosome-Glow Nanosystem for Cancer Cellular and Tissue Bioimaging.
Chem Biomed Imaging. 2024 Aug 7;2(10):711-720. doi: 10.1021/cbmi.4c00040. eCollection 2024 Oct 28.
5
The Current Status and Future Directions on Nanoparticles for Tumor Molecular Imaging.
Int J Nanomedicine. 2024 Sep 14;19:9549-9574. doi: 10.2147/IJN.S484206. eCollection 2024.
6
Non-Small Cell Lung Cancer Imaging Using a Phospholipase A2 Activatable Fluorophore.
Chem Biomed Imaging. 2024 Jun 20;2(7):490-500. doi: 10.1021/cbmi.4c00026. eCollection 2024 Jul 22.
7
Convolutional neural network advances in demosaicing for fluorescent cancer imaging with color-near-infrared sensors.
J Biomed Opt. 2024 Jul;29(7):076005. doi: 10.1117/1.JBO.29.7.076005. Epub 2024 Jul 23.
8
Conditional Control of Universal CAR T Cells by Cleavable OFF-Switch Adaptors.
ACS Synth Biol. 2023 Oct 20;12(10):2996-3007. doi: 10.1021/acssynbio.3c00320. Epub 2023 Oct 4.
9
Fluorescence-guided surgical system using holographic display: from phantom studies to canine patients.
J Biomed Opt. 2023 Sep;28(9):096003. doi: 10.1117/1.JBO.28.9.096003. Epub 2023 Sep 20.
10
Organic fluorescent nanoprobes with NIR-IIb characteristics for deep learning.
Exploration (Beijing). 2022 Feb 19;2(2):20210097. doi: 10.1002/EXP.20210097. eCollection 2022 Apr.

本文引用的文献

2
Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror.
Biomed Opt Express. 2013 Dec 20;5(1):293-311. doi: 10.1364/BOE.5.000293.
4
Cancer statistics, 2014.
CA Cancer J Clin. 2014 Jan-Feb;64(1):9-29. doi: 10.3322/caac.21208. Epub 2014 Jan 7.
5
Handheld simultaneous scanning laser ophthalmoscopy and optical coherence tomography system.
Biomed Opt Express. 2013 Oct 1;4(11):2307-21. doi: 10.1364/BOE.4.002307. eCollection 2013.
6
Miniature real-time intraoperative forward-imaging optical coherence tomography probe.
Biomed Opt Express. 2013 Jul 16;4(8):1342-50. doi: 10.1364/BOE.4.001342. eCollection 2013.
7
Pulsed-light imaging for fluorescence guided surgery under normal room lighting.
Opt Lett. 2013 Sep 1;38(17):3249-52. doi: 10.1364/OL.38.003249.
8
Fluorescence-guided surgery with live molecular navigation--a new cutting edge.
Nat Rev Cancer. 2013 Sep;13(9):653-62. doi: 10.1038/nrc3566. Epub 2013 Aug 8.
9
Image-guided cancer surgery using near-infrared fluorescence.
Nat Rev Clin Oncol. 2013 Sep;10(9):507-18. doi: 10.1038/nrclinonc.2013.123. Epub 2013 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验