Department of Neurology, University of California, Los Angeles, CA 90095, USA. Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
Department of Neurology, University of California, Los Angeles, CA 90095, USA.
Dis Model Mech. 2014 Dec;7(12):1351-63. doi: 10.1242/dmm.017020. Epub 2014 Oct 2.
Mutations in LRRK2 cause a dominantly inherited form of Parkinson's disease (PD) and are the most common known genetic determinant of PD. Inhibitor-based therapies targeting LRRK2 have emerged as a key therapeutic strategy in PD; thus, understanding the consequences of inhibiting the normal cellular functions of this protein is vital. Despite much interest, the physiological functions of LRRK2 remain unclear. Several recent studies have linked the toxicity caused by overexpression of pathogenic mutant forms of LRRK2 to defects in the endolysosomal and autophagy pathways, raising the question of whether endogenous LRRK2 might play a role in these processes. Here, we report the characterization of multiple novel ethyl methanesulfonate (EMS)-induced nonsense alleles in the Drosophila LRRK2 homolog, lrrk. Using these alleles, we show that lrrk loss-of-function causes striking defects in the endolysosomal and autophagy pathways, including the accumulation of markedly enlarged lysosomes that are laden with undigested contents, consistent with a defect in lysosomal degradation. lrrk loss-of-function also results in the accumulation of autophagosomes, as well as the presence of enlarged early endosomes laden with mono-ubiquitylated cargo proteins, suggesting an additional defect in lysosomal substrate delivery. Interestingly, the lysosomal abnormalities in these lrrk mutants can be suppressed by a constitutively active form of the small GTPase rab9, which promotes retromer-dependent recycling from late endosomes to the Golgi. Collectively, our data provides compelling evidence of a vital role for lrrk in lysosomal function and endolysosomal membrane transport in vivo, and suggests a link between lrrk and retromer-mediated endosomal recycling.
LRRK2 突变导致一种常染色体显性遗传形式的帕金森病 (PD),是 PD 最常见的已知遗传决定因素。靶向 LRRK2 的抑制剂治疗已成为 PD 的关键治疗策略;因此,了解抑制该蛋白正常细胞功能的后果至关重要。尽管人们对此非常感兴趣,但 LRRK2 的生理功能仍不清楚。最近的几项研究将致病性突变形式的 LRRK2 过度表达引起的毒性与内溶酶体和自噬途径的缺陷联系起来,提出了内源性 LRRK2 是否可能在这些过程中发挥作用的问题。在这里,我们报告了在果蝇 LRRK2 同源物 lrrk 中多个新的乙磺酸乙酯 (EMS) 诱导的无义等位基因的特征。使用这些等位基因,我们表明 lrrk 功能丧失会导致内溶酶体和自噬途径的明显缺陷,包括明显增大的溶酶体的积累,这些溶酶体充满未消化的内容物,与溶酶体降解缺陷一致。lrrk 功能丧失还导致自噬体的积累,以及含有单泛素化货物蛋白的增大早期内体的存在,表明溶酶体底物递送上的另外缺陷。有趣的是,这些 lrrk 突变体中的溶酶体异常可以被小 GTPase rab9 的组成活性形式抑制,该小 GTPase rab9 促进从晚期内体到高尔基体的逆向转运体依赖性回收。总的来说,我们的数据提供了令人信服的证据,证明 lrrk 在体内溶酶体功能和内溶酶体膜运输中起着至关重要的作用,并表明 lrrk 与 retromer 介导的内体回收之间存在联系。