Bone Daniel, Goodwin Matthew S, Black Matthew P, Lee Chi-Chun, Audhkhasi Kartik, Narayanan Shrikanth
Signal Analysis & Interpretation Laboratory (SAIL), University of Southern California, 3710 McClintock Ave., Los Angeles, CA, 90089, USA,
J Autism Dev Disord. 2015 May;45(5):1121-36. doi: 10.1007/s10803-014-2268-6.
Machine learning has immense potential to enhance diagnostic and intervention research in the behavioral sciences, and may be especially useful in investigations involving the highly prevalent and heterogeneous syndrome of autism spectrum disorder. However, use of machine learning in the absence of clinical domain expertise can be tenuous and lead to misinformed conclusions. To illustrate this concern, the current paper critically evaluates and attempts to reproduce results from two studies (Wall et al. in Transl Psychiatry 2(4):e100, 2012a; PloS One 7(8), 2012b) that claim to drastically reduce time to diagnose autism using machine learning. Our failure to generate comparable findings to those reported by Wall and colleagues using larger and more balanced data underscores several conceptual and methodological problems associated with these studies. We conclude with proposed best-practices when using machine learning in autism research, and highlight some especially promising areas for collaborative work at the intersection of computational and behavioral science.
机器学习在加强行为科学的诊断和干预研究方面具有巨大潜力,在涉及高度普遍且异质性的自闭症谱系障碍综合征的调查中可能特别有用。然而,在缺乏临床领域专业知识的情况下使用机器学习可能站不住脚,并导致错误的结论。为了说明这一问题,本文对两项研究(Wall等人,《转化精神病学》2(4):e100,2012年a;《公共科学图书馆·综合》7(8),2012年b)进行了批判性评估,并试图重现其结果,这两项研究声称使用机器学习可大幅缩短自闭症的诊断时间。我们未能使用更大且更均衡的数据得出与Wall及其同事报告的结果相当的发现,这凸显了与这些研究相关的几个概念和方法问题。我们最后提出了在自闭症研究中使用机器学习的最佳实践建议,并强调了在计算科学与行为科学交叉领域进行合作的一些特别有前景的领域。