Suppr超能文献

由平衡和不平衡的树突-树突状兴奋与抑制产生的稀疏编码和侧向抑制。

Sparse coding and lateral inhibition arising from balanced and unbalanced dendrodendritic excitation and inhibition.

作者信息

Yu Yuguo, Migliore Michele, Hines Michael L, Shepherd Gordon M

机构信息

Center for Computational Systems Biology, The State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, School of Life Sciences, Shanghai, 200433, China, Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520, and

Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520, and Institute of Biophysics, National Research Council, 90146 Palermo, Italy.

出版信息

J Neurosci. 2014 Oct 8;34(41):13701-13. doi: 10.1523/JNEUROSCI.1834-14.2014.

Abstract

The precise mechanism by which synaptic excitation and inhibition interact with each other in odor coding through the unique dendrodendritic synaptic microcircuits present in olfactory bulb is unknown. Here a scaled-up model of the mitral-granule cell network in the rodent olfactory bulb is used to analyze dendrodendritic processing of experimentally determined odor patterns. We found that the interaction between excitation and inhibition is responsible for two fundamental computational mechanisms: (1) a balanced excitation/inhibition in strongly activated mitral cells, leading to a sparse representation of odorant input, and (2) an unbalanced excitation/inhibition (inhibition dominated) in surrounding weakly activated mitral cells, leading to lateral inhibition. These results suggest how both mechanisms can carry information about the input patterns, with optimal level of synaptic excitation and inhibition producing the highest level of sparseness and decorrelation in the network response. The results suggest how the learning process, through the emergent development of these mechanisms, can enhance odor representation of olfactory bulb.

摘要

在嗅球中,通过独特的树突 - 树突突触微电路,突触兴奋和抑制在气味编码过程中相互作用的确切机制尚不清楚。在这里,使用啮齿动物嗅球中二尖瓣 - 颗粒细胞网络的放大模型来分析实验确定的气味模式的树突 - 树突处理。我们发现,兴奋和抑制之间的相互作用负责两种基本的计算机制:(1)在强烈激活的二尖瓣细胞中实现兴奋/抑制平衡,导致气味剂输入的稀疏表示;(2)在周围弱激活的二尖瓣细胞中出现不平衡的兴奋/抑制(抑制占主导),导致侧向抑制。这些结果表明这两种机制如何能够携带有关输入模式的信息,其中突触兴奋和抑制的最佳水平在网络响应中产生最高水平的稀疏性和去相关性。结果还表明,通过这些机制的涌现发展,学习过程如何能够增强嗅球的气味表征。

相似文献

3
Dendrodendritic inhibition and simulated odor responses in a detailed olfactory bulb network model.
J Neurophysiol. 2003 Sep;90(3):1921-35. doi: 10.1152/jn.00623.2002. Epub 2003 May 7.
4
Sparse distributed representation of odors in a large-scale olfactory bulb circuit.
PLoS Comput Biol. 2013;9(3):e1003014. doi: 10.1371/journal.pcbi.1003014. Epub 2013 Mar 28.
5
Blocking of Dendrodendritic Inhibition Unleashes Widely Spread Lateral Propagation of Odor-evoked Activity in the Mouse Olfactory Bulb.
Neuroscience. 2018 Nov 1;391:50-59. doi: 10.1016/j.neuroscience.2018.09.003. Epub 2018 Sep 9.
6
Dendritic action potentials connect distributed dendrodendritic microcircuits.
J Comput Neurosci. 2008 Apr;24(2):207-21. doi: 10.1007/s10827-007-0051-9. Epub 2007 Aug 3.
7
Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb.
Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3371-5. doi: 10.1073/pnas.92.8.3371.
8
GABA(B) receptors inhibit dendrodendritic transmission in the rat olfactory bulb.
J Neurosci. 2003 Mar 15;23(6):2032-9. doi: 10.1523/JNEUROSCI.23-06-02032.2003.

引用本文的文献

1
Self-supervised learning of scale-invariant neural representations of space and time.
J Comput Neurosci. 2025 Mar;53(1):131-162. doi: 10.1007/s10827-024-00891-1. Epub 2025 Jan 22.
2
Progress of the Impact of Terahertz Radiation on Ion Channel Kinetics in Neuronal Cells.
Neurosci Bull. 2024 Dec;40(12):1960-1974. doi: 10.1007/s12264-024-01277-0. Epub 2024 Sep 4.
3
Forebrain E-I balance controlled in cognition through coordinated inhibition and inhibitory transcriptome mechanism.
Front Cell Neurosci. 2023 Feb 24;17:1114037. doi: 10.3389/fncel.2023.1114037. eCollection 2023.
4
Energy efficiency and coding of neural network.
Front Neurosci. 2023 Jan 11;16:1089373. doi: 10.3389/fnins.2022.1089373. eCollection 2022.
5
A 3D atlas of functional human brain energetic connectome based on neuropil distribution.
Cereb Cortex. 2023 Mar 21;33(7):3996-4012. doi: 10.1093/cercor/bhac322.
6
7
Connectivity and dynamics in the olfactory bulb.
PLoS Comput Biol. 2022 Feb 7;18(2):e1009856. doi: 10.1371/journal.pcbi.1009856. eCollection 2022 Feb.
8
Changes in Brain Functional Network Connectivity in Adult Moyamoya Diseases.
Cogn Neurodyn. 2021 Oct;15(5):861-872. doi: 10.1007/s11571-021-09666-1. Epub 2021 Feb 7.
9
10
Balancing Extrasynaptic Excitation and Synaptic Inhibition within Olfactory Bulb Glomeruli.
eNeuro. 2019 Aug 7;6(4). doi: 10.1523/ENEURO.0247-19.2019. Print 2019 Jul/Aug.

本文引用的文献

2
Disruption of centrifugal inhibition to olfactory bulb granule cells impairs olfactory discrimination.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14777-82. doi: 10.1073/pnas.1310686110. Epub 2013 Aug 19.
3
Sparse distributed representation of odors in a large-scale olfactory bulb circuit.
PLoS Comput Biol. 2013;9(3):e1003014. doi: 10.1371/journal.pcbi.1003014. Epub 2013 Mar 28.
4
Interglomerular lateral inhibition targeted on external tufted cells in the olfactory bulb.
J Neurosci. 2013 Jan 23;33(4):1552-63. doi: 10.1523/JNEUROSCI.3410-12.2013.
5
Dynamic sensory representations in the olfactory bulb: modulation by wakefulness and experience.
Neuron. 2012 Dec 6;76(5):962-75. doi: 10.1016/j.neuron.2012.09.037.
6
On-Center/Inhibitory-Surround Decorrelation via Intraglomerular Inhibition in the Olfactory Bulb Glomerular Layer.
Front Integr Neurosci. 2012 Feb 10;6:5. doi: 10.3389/fnint.2012.00005. eCollection 2012.
7
Perception of sniff phase in mouse olfaction.
Nature. 2011 Oct 12;479(7373):397-400. doi: 10.1038/nature10521.
8
Sparse incomplete representations: a potential role of olfactory granule cells.
Neuron. 2011 Oct 6;72(1):124-36. doi: 10.1016/j.neuron.2011.07.031.
9
All in a sniff: olfaction as a model for active sensing.
Neuron. 2011 Sep 22;71(6):962-73. doi: 10.1016/j.neuron.2011.08.030. Epub 2011 Sep 21.
10
Effect of sniffing on the temporal structure of mitral/tufted cell output from the olfactory bulb.
J Neurosci. 2011 Jul 20;31(29):10615-26. doi: 10.1523/JNEUROSCI.1805-11.2011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验