Suppr超能文献

厌氧细菌在白色念珠菌生物膜内生长,并在悬浮培养物中诱导生物膜形成。

Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures.

作者信息

Fox Emily P, Cowley Elise S, Nobile Clarissa J, Hartooni Nairi, Newman Dianne K, Johnson Alexander D

机构信息

Department of Microbiology and Immunology, University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94158, USA; Tetrad Program, Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94158, USA.

Division of Biology and Biological Engineering, California Institute of Technology, 147-75, 1200 East California Boulevard, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, 147-75, 1200 East California Boulevard, Pasadena, CA 91125, USA.

出版信息

Curr Biol. 2014 Oct 20;24(20):2411-6. doi: 10.1016/j.cub.2014.08.057. Epub 2014 Oct 9.

Abstract

The human microbiome contains diverse microorganisms, which share and compete for the same environmental niches. A major microbial growth form in the human body is the biofilm state, where tightly packed bacterial, archaeal, and fungal cells must cooperate and/or compete for resources in order to survive. We examined mixed biofilms composed of the major fungal species of the gut microbiome, Candida albicans, and each of five prevalent bacterial gastrointestinal inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis. We observed that biofilms formed by C. albicans provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found that coculture with bacteria in biofilms induces massive gene expression changes in C. albicans, including upregulation of WOR1, which encodes a transcription regulator that controls a phenotypic switch in C. albicans, from the "white" cell type to the "opaque" cell type. Finally, we observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into "mini-biofilms," which allow C. perfringens cells to survive in a normally toxic environment. This work indicates that bacteria and C. albicans interactions modulate the local chemistry of their environment in multiple ways to create niches favorable to their growth and survival.

摘要

人类微生物组包含多种微生物,它们共享并竞争相同的环境生态位。人体中一种主要的微生物生长形式是生物膜状态,在这种状态下,紧密聚集的细菌、古菌和真菌细胞必须为了生存而合作和/或竞争资源。我们研究了由肠道微生物组的主要真菌物种白色念珠菌以及五种常见的胃肠道细菌居民(脆弱拟杆菌、产气荚膜梭菌、大肠杆菌、肺炎克雷伯菌和粪肠球菌)中的每一种组成的混合生物膜。我们观察到,即使在通常对细菌有毒的有氧环境中培养,白色念珠菌形成的生物膜也能提供一个支持两种厌氧菌生长的低氧微环境。我们还发现,与生物膜中的细菌共培养会诱导白色念珠菌发生大量基因表达变化,包括WOR1的上调,WOR1编码一种转录调节因子,可控制白色念珠菌从“白色”细胞类型到“不透明”细胞类型的表型转换。最后,我们观察到在悬浮培养中,产气荚膜梭菌会诱导白色念珠菌聚集形成“微型生物膜”,使产气荚膜梭菌细胞能够在通常有毒的环境中存活。这项工作表明,细菌与白色念珠菌之间的相互作用以多种方式调节其周围环境的局部化学性质,从而创造有利于它们生长和生存的生态位。

相似文献

1
Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures.
Curr Biol. 2014 Oct 20;24(20):2411-6. doi: 10.1016/j.cub.2014.08.057. Epub 2014 Oct 9.
2
Effect of oral bacteria on growth and survival of Candida albicans biofilms.
Arch Oral Biol. 2006 Aug;51(8):672-80. doi: 10.1016/j.archoralbio.2006.02.005. Epub 2006 Apr 18.
3
Relative Abundances of Candida albicans and Candida glabrata in Coculture Biofilms Impact Biofilm Structure and Formation.
Appl Environ Microbiol. 2018 Apr 2;84(8). doi: 10.1128/AEM.02769-17. Print 2018 Apr 15.
5
Global Identification of Biofilm-Specific Proteolysis in Candida albicans.
mBio. 2016 Sep 13;7(5):e01514-16. doi: 10.1128/mBio.01514-16.
6
Candida albicans survival and biofilm formation under starvation conditions.
Int Endod J. 2013 Jan;46(1):62-70. doi: 10.1111/j.1365-2591.2012.02094.x. Epub 2012 Jul 3.
8
A sticky situation: untangling the transcriptional network controlling biofilm development in Candida albicans.
Transcription. 2012 Nov-Dec;3(6):315-22. doi: 10.4161/trns.22281. Epub 2012 Nov 1.
10
Both Pseudomonas aeruginosa and Candida albicans Accumulate Greater Biomass in Dual-Species Biofilms under Flow.
mSphere. 2021 Jun 30;6(3):e0041621. doi: 10.1128/mSphere.00416-21. Epub 2021 Jun 23.

引用本文的文献

1
During nitrogen-limited biofilm formation, mitophagy is independent of mitochondrial fission.
Autophagy Rep. 2025 Aug 22;4(1):2547194. doi: 10.1080/27694127.2025.2547194. eCollection 2025.
2
Shared metabolism between a bacterial and fungal species that reside in the human gut.
Proc Natl Acad Sci U S A. 2025 Sep 2;122(35):e2504785122. doi: 10.1073/pnas.2504785122. Epub 2025 Aug 25.
3
Impact of overlapping fungal infection on the occurrence and prognosis of carbapenem-resistant gram-negative bacilli infection.
Front Cell Infect Microbiol. 2025 May 30;15:1523233. doi: 10.3389/fcimb.2025.1523233. eCollection 2025.
4
The hypoxic microenvironment of biofilms shapes neutrophil responses.
Front Immunol. 2025 Apr 22;16:1547559. doi: 10.3389/fimmu.2025.1547559. eCollection 2025.
6
impacts carbohydrate metabolism of in interkingdom biofilms.
J Oral Microbiol. 2025 Apr 16;17(1):2492194. doi: 10.1080/20002297.2025.2492194. eCollection 2025.
7
Inter-kingdom interactions and environmental influences on the oral microbiome in severe early childhood caries.
Microbiol Spectr. 2025 Jun 3;13(6):e0251824. doi: 10.1128/spectrum.02518-24. Epub 2025 Apr 15.
8
Synergistic effects of and biofilms on epithelial barrier function in a 3D aspiration pneumonia model.
Front Cell Infect Microbiol. 2025 Mar 7;15:1552395. doi: 10.3389/fcimb.2025.1552395. eCollection 2025.
10

本文引用的文献

1
Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism.
Nat Genet. 2013 Sep;45(9):1088-91. doi: 10.1038/ng.2710. Epub 2013 Jul 28.
2
Structure of the transcriptional network controlling white-opaque switching in Candida albicans.
Mol Microbiol. 2013 Oct;90(1):22-35. doi: 10.1111/mmi.12329. Epub 2013 Aug 25.
3
Toxin plasmids of Clostridium perfringens.
Microbiol Mol Biol Rev. 2013 Jun;77(2):208-33. doi: 10.1128/MMBR.00062-12.
4
The polymicrobial nature of biofilm infection.
Clin Microbiol Infect. 2013 Feb;19(2):107-12. doi: 10.1111/j.1469-0691.2012.04001.x. Epub 2012 Aug 27.
5
Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p.
Microbiology (Reading). 2012 Dec;158(Pt 12):2975-2986. doi: 10.1099/mic.0.062109-0. Epub 2012 Aug 23.
6
The mycobiome: influencing IBD severity.
Cell Host Microbe. 2012 Jun 14;11(6):551-2. doi: 10.1016/j.chom.2012.05.009.
7
Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis.
Science. 2012 Jun 8;336(6086):1314-7. doi: 10.1126/science.1221789. Epub 2012 Jun 6.
8
A recently evolved transcriptional network controls biofilm development in Candida albicans.
Cell. 2012 Jan 20;148(1-2):126-38. doi: 10.1016/j.cell.2011.10.048.
9
Life-threatening clostridial infections.
Anaerobe. 2012 Apr;18(2):254-9. doi: 10.1016/j.anaerobe.2011.11.001. Epub 2011 Nov 20.
10
The Candida albicans-specific gene EED1 encodes a key regulator of hyphal extension.
PLoS One. 2011 Apr 7;6(4):e18394. doi: 10.1371/journal.pone.0018394.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验