Suppr超能文献

分析复杂的大脑功能网络:融合统计学与网络科学以理解大脑。

Analyzing complex functional brain networks: Fusing statistics and network science to understand the brain.

作者信息

Simpson Sean L, Bowman F DuBois, Laurienti Paul J

机构信息

Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC.

Department of Biostatistics and Bioinformatics, The Rollins School of Public Health, Emory University, Atlanta, GA.

出版信息

Stat Surv. 2013;7:1-36. doi: 10.1214/13-SS103.

Abstract

Complex functional brain network analyses have exploded over the last decade, gaining traction due to their profound clinical implications. The application of network science (an interdisciplinary offshoot of graph theory) has facilitated these analyses and enabled examining the brain as an integrated system that produces complex behaviors. While the field of statistics has been integral in advancing activation analyses and some connectivity analyses in functional neuroimaging research, it has yet to play a commensurate role in complex network analyses. Fusing novel statistical methods with network-based functional neuroimage analysis will engender powerful analytical tools that will aid in our understanding of normal brain function as well as alterations due to various brain disorders. Here we survey widely used statistical and network science tools for analyzing fMRI network data and discuss the challenges faced in filling some of the remaining methodological gaps. When applied and interpreted correctly, the fusion of network scientific and statistical methods has a chance to revolutionize the understanding of brain function.

摘要

在过去十年中,复杂功能性脑网络分析迅速发展,因其具有深远的临床意义而受到广泛关注。网络科学(图论的一个跨学科分支)的应用推动了这些分析,并使得将大脑作为一个产生复杂行为的整合系统来进行研究成为可能。虽然统计学领域在推进功能神经成像研究中的激活分析和一些连通性分析方面发挥了不可或缺的作用,但在复杂网络分析中尚未发挥相应的作用。将新颖的统计方法与基于网络的功能神经影像分析相结合,将产生强大的分析工具,有助于我们理解正常脑功能以及各种脑部疾病导致的变化。在此,我们综述了广泛用于分析功能磁共振成像(fMRI)网络数据的统计和网络科学工具,并讨论了在填补一些剩余方法学空白时所面临的挑战。如果应用和解释得当,网络科学方法与统计方法的融合有机会彻底改变我们对脑功能的理解。

相似文献

7
Defining nodes in complex brain networks.定义复杂脑网络中的节点。
Front Comput Neurosci. 2013 Nov 22;7:169. doi: 10.3389/fncom.2013.00169.
9
Statistical Brain Network Analysis.统计脑网络分析
Annu Rev Stat Appl. 2024;11:505-531. doi: 10.1146/annurev-statistics-040522-020722. Epub 2023 Nov 27.
10
Graph-based network analysis of resting-state functional MRI.基于图的静息态功能磁共振成像网络分析。
Front Syst Neurosci. 2010 Jun 7;4:16. doi: 10.3389/fnsys.2010.00016. eCollection 2010.

引用本文的文献

3
Statistical Brain Network Analysis.统计脑网络分析
Annu Rev Stat Appl. 2024;11:505-531. doi: 10.1146/annurev-statistics-040522-020722. Epub 2023 Nov 27.
6
R-Mixup: Riemannian Mixup for Biological Networks.R-Mixup:生物网络的黎曼混合
KDD. 2023 Aug;2023:1073-1085. doi: 10.1145/3580305.3599483. Epub 2023 Aug 4.

本文引用的文献

1
7
Complexity in a brain-inspired agent-based model.基于大脑启发的代理模型中的复杂性。
Neural Netw. 2012 Sep;33:275-90. doi: 10.1016/j.neunet.2012.05.012. Epub 2012 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验