Simpson Sean L, Bowman F DuBois, Laurienti Paul J
Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC.
Department of Biostatistics and Bioinformatics, The Rollins School of Public Health, Emory University, Atlanta, GA.
Stat Surv. 2013;7:1-36. doi: 10.1214/13-SS103.
Complex functional brain network analyses have exploded over the last decade, gaining traction due to their profound clinical implications. The application of network science (an interdisciplinary offshoot of graph theory) has facilitated these analyses and enabled examining the brain as an integrated system that produces complex behaviors. While the field of statistics has been integral in advancing activation analyses and some connectivity analyses in functional neuroimaging research, it has yet to play a commensurate role in complex network analyses. Fusing novel statistical methods with network-based functional neuroimage analysis will engender powerful analytical tools that will aid in our understanding of normal brain function as well as alterations due to various brain disorders. Here we survey widely used statistical and network science tools for analyzing fMRI network data and discuss the challenges faced in filling some of the remaining methodological gaps. When applied and interpreted correctly, the fusion of network scientific and statistical methods has a chance to revolutionize the understanding of brain function.
在过去十年中,复杂功能性脑网络分析迅速发展,因其具有深远的临床意义而受到广泛关注。网络科学(图论的一个跨学科分支)的应用推动了这些分析,并使得将大脑作为一个产生复杂行为的整合系统来进行研究成为可能。虽然统计学领域在推进功能神经成像研究中的激活分析和一些连通性分析方面发挥了不可或缺的作用,但在复杂网络分析中尚未发挥相应的作用。将新颖的统计方法与基于网络的功能神经影像分析相结合,将产生强大的分析工具,有助于我们理解正常脑功能以及各种脑部疾病导致的变化。在此,我们综述了广泛用于分析功能磁共振成像(fMRI)网络数据的统计和网络科学工具,并讨论了在填补一些剩余方法学空白时所面临的挑战。如果应用和解释得当,网络科学方法与统计方法的融合有机会彻底改变我们对脑功能的理解。