Suppr超能文献

3M_BANTOR:一种用于多任务和多会话脑网络距离度量的回归框架。

3M_BANTOR: A regression framework for multitask and multisession brain network distance metrics.

作者信息

Tomlinson Chal E, Laurienti Paul J, Lyday Robert G, Simpson Sean L

机构信息

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Laboratory for Complex Brain Networks, Wake Forest University School of Medicine, Winston-Salem, NC, USA.

出版信息

Netw Neurosci. 2023 Jan 1;7(1):1-21. doi: 10.1162/netn_a_00274. eCollection 2023.

Abstract

Brain network analyses have exploded in recent years and hold great potential in helping us understand normal and abnormal brain function. Network science approaches have facilitated these analyses and our understanding of how the brain is structurally and functionally organized. However, the development of statistical methods that allow relating this organization to phenotypic traits has lagged behind. Our previous work developed a novel analytic framework to assess the relationship between brain network architecture and phenotypic differences while controlling for confounding variables. More specifically, this innovative regression framework related distances (or similarities) between brain network features from a single task to functions of absolute differences in continuous covariates and indicators of difference for categorical variables. Here we extend that work to the multitask and multisession context to allow for multiple brain networks per individual. We explore several similarity metrics for comparing distances between connection matrices and adapt several standard methods for estimation and inference within our framework: standard test, test with scan-level effects (SLE), and our proposed mixed model for multitask (and multisession) BrAin NeTwOrk Regression (3M_BANTOR). A novel strategy is implemented to simulate symmetric positive-definite (SPD) connection matrices, allowing for the testing of metrics on the Riemannian manifold. Via simulation studies, we assess all approaches for estimation and inference while comparing them with existing multivariate distance matrix regression (MDMR) methods. We then illustrate the utility of our framework by analyzing the relationship between fluid intelligence and brain network distances in Human Connectome Project (HCP) data.

摘要

近年来,脑网络分析迅速发展,在帮助我们理解正常和异常脑功能方面具有巨大潜力。网络科学方法推动了这些分析以及我们对大脑结构和功能组织方式的理解。然而,能够将这种组织与表型特征联系起来的统计方法的发展却滞后了。我们之前的工作开发了一种新颖的分析框架,用于在控制混杂变量的同时评估脑网络架构与表型差异之间的关系。更具体地说,这种创新的回归框架将来自单个任务的脑网络特征之间的距离(或相似性)与连续协变量的绝对差异函数以及分类变量的差异指标联系起来。在这里,我们将该工作扩展到多任务和多会话情境,以允许每个人有多个脑网络。我们探索了几种用于比较连接矩阵之间距离的相似性度量,并在我们的框架内采用了几种标准方法进行估计和推断:标准检验、具有扫描水平效应(SLE)的检验以及我们提出的用于多任务(和多会话)脑网络回归的混合模型(3M_BANTOR)。我们实施了一种新颖的策略来模拟对称正定(SPD)连接矩阵,从而能够在黎曼流形上测试度量。通过模拟研究,我们评估了所有估计和推断方法,并将它们与现有的多元距离矩阵回归(MDMR)方法进行比较。然后,我们通过分析人类连接组计划(HCP)数据中流体智力与脑网络距离之间的关系来说明我们框架的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2275/10270667/22cfcad5abee/netn-7-1-1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验