Stough Joshua V, Glaister Jeffrey, Ye Chuyang, Ying Sarah H, Prince Jerry L, Carass Aaron
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):169-76. doi: 10.1007/978-3-319-10443-0_22.
Segmentation and parcellation of the thalamus is an important step in providing volumetric assessment of the impact of disease n brain structures. Conventionally, segmentation is carried out on T1-weighted magnetic resonance (MR) images and nuclear parcellation using diffusion weighted MR images. We present the first fully automatic method that incorporates both tissue contrasts and several derived fea-fractional anisotrophy, fiber orientation from the 5D Knutsson representation of the principal eigenvectors, and connectivity between the thalamus and the cortical lobes, as features. Combining these multiple information sources allows us to identify discriminating dimensions and thus parcellate the thalamic nuclei. A hierarchical random forest framework with a multidimensional feature per voxel, first distinguishes thalamus from background, and then separates each group of thalamic nuclei. Using a leave one out cross-validation on 12 subjects we have a mean Dice score of 0.805 and 0.799 for the left and right thalami, respectively. We also report overlap for the thalamic nuclear groups.
丘脑的分割和分区是对疾病对脑结构影响进行体积评估的重要步骤。传统上,分割是在T1加权磁共振(MR)图像上进行的,而核分区则使用扩散加权MR图像。我们提出了第一种全自动方法,该方法结合了组织对比度和几个派生特征——分数各向异性、来自主特征向量的5D克努特森表示的纤维方向,以及丘脑与皮质叶之间的连通性作为特征。结合这些多个信息源使我们能够识别区分维度,从而对丘脑核进行分区。一个具有每个体素多维特征的分层随机森林框架,首先将丘脑与背景区分开来,然后将每组丘脑核分开。在12名受试者上使用留一法交叉验证,我们得到左、右丘脑的平均骰子系数分别为0.805和0.799。我们还报告了丘脑核组的重叠情况。