Suppr超能文献

基于多模态特征分类的丘脑分割自动方法

Automatic method for thalamus parcellation using multi-modal feature classification.

作者信息

Stough Joshua V, Glaister Jeffrey, Ye Chuyang, Ying Sarah H, Prince Jerry L, Carass Aaron

出版信息

Med Image Comput Comput Assist Interv. 2014;17(Pt 3):169-76. doi: 10.1007/978-3-319-10443-0_22.

Abstract

Segmentation and parcellation of the thalamus is an important step in providing volumetric assessment of the impact of disease n brain structures. Conventionally, segmentation is carried out on T1-weighted magnetic resonance (MR) images and nuclear parcellation using diffusion weighted MR images. We present the first fully automatic method that incorporates both tissue contrasts and several derived fea-fractional anisotrophy, fiber orientation from the 5D Knutsson representation of the principal eigenvectors, and connectivity between the thalamus and the cortical lobes, as features. Combining these multiple information sources allows us to identify discriminating dimensions and thus parcellate the thalamic nuclei. A hierarchical random forest framework with a multidimensional feature per voxel, first distinguishes thalamus from background, and then separates each group of thalamic nuclei. Using a leave one out cross-validation on 12 subjects we have a mean Dice score of 0.805 and 0.799 for the left and right thalami, respectively. We also report overlap for the thalamic nuclear groups.

摘要

丘脑的分割和分区是对疾病对脑结构影响进行体积评估的重要步骤。传统上,分割是在T1加权磁共振(MR)图像上进行的,而核分区则使用扩散加权MR图像。我们提出了第一种全自动方法,该方法结合了组织对比度和几个派生特征——分数各向异性、来自主特征向量的5D克努特森表示的纤维方向,以及丘脑与皮质叶之间的连通性作为特征。结合这些多个信息源使我们能够识别区分维度,从而对丘脑核进行分区。一个具有每个体素多维特征的分层随机森林框架,首先将丘脑与背景区分开来,然后将每组丘脑核分开。在12名受试者上使用留一法交叉验证,我们得到左、右丘脑的平均骰子系数分别为0.805和0.799。我们还报告了丘脑核组的重叠情况。

相似文献

1
Automatic method for thalamus parcellation using multi-modal feature classification.基于多模态特征分类的丘脑分割自动方法
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):169-76. doi: 10.1007/978-3-319-10443-0_22.
4
Affine registration of diffusion tensor MR images.扩散张量磁共振图像的仿射配准
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):629-36. doi: 10.1007/11866763_77.
7
A method for registering diffusion weighted magnetic resonance images.一种用于配准扩散加权磁共振图像的方法。
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):594-602. doi: 10.1007/11866763_73.
8
Discriminative, semantic segmentation of brain tissue in MR images.磁共振图像中脑组织的判别式语义分割。
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):558-65. doi: 10.1007/978-3-642-04271-3_68.
10
Diffusion tensor image registration using tensor geometry and orientation features.使用张量几何和方向特征的扩散张量图像配准
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):905-13. doi: 10.1007/978-3-540-85990-1_109.

引用本文的文献

本文引用的文献

3
FSL.束流输送系统。
Neuroimage. 2012 Aug 15;62(2):782-90. doi: 10.1016/j.neuroimage.2011.09.015. Epub 2011 Sep 16.
4
Simple paradigm for extra-cerebral tissue removal: algorithm and analysis.用于去除脑外组织的简单范例:算法与分析。
Neuroimage. 2011 Jun 15;56(4):1982-92. doi: 10.1016/j.neuroimage.2011.03.045. Epub 2011 Mar 31.
5
Homeomorphic brain image segmentation with topological and statistical atlases.使用拓扑和统计图谱的同胚脑图像分割
Med Image Anal. 2008 Oct;12(5):616-25. doi: 10.1016/j.media.2008.06.008. Epub 2008 Jun 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验