Shao Muhan, Zuo Lianrui, Carass Aaron, Zhuo Jiachen, Gullapalli Rao P, Prince Jerry L
Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institute of Health, Baltimore, MD 21224, USA.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12032. doi: 10.1117/12.2613159. Epub 2022 Apr 4.
Medical image segmentation is one of the core tasks of medical image analysis. Automatic segmentation of brain magnetic resonance images (MRIs) can be used to visualize and track changes of the brain's anatomical structures that may occur due to normal aging or disease. Machine learning techniques are widely used in automatic structure segmentation. However, the contrast variation between the training and testing data makes it difficult for segmentation algorithms to generate consistent results. To address this problem, an image-to-image translation technique called MR image harmonization can be used to match the contrast between different data sets. It is important for the harmonization to transform image intensity while maintaining the underlying anatomy. In this paper, we present a 3D U-Net algorithm to segment the thalamus from multiple MR image modalities and investigate the impact of harmonization on the segmentation algorithm. Manual delineations of thalamic nuclei on two data sets are available. However, we aim to analyze the thalamus in another large data set where ground truth labels are lacking. We trained two segmentation networks, one with unharmonized images and the other with harmonized images, on one data set with manual labels, and compared their performances on the other data set with manual labels. These two data groups were diagnosed with two brain disorders and were acquired with similar imaging protocols. The harmonization target is the large data set without manual labels, which also has a different imaging protocol. The networks trained on unharmonized and harmonized data showed no significant difference when evaluating on the other data set; demonstrating that image harmonization can maintain the anatomy and does not affect the segmentation task. The two networks were evaluated on the harmonization target data set and the network trained on harmonized data showed significant improvement over the network trained on unharmonized data. Therefore, the network trained on harmonized data provides the potential to process large amounts of data from other sites, even in the absence of site-specific training data.
医学图像分割是医学图像分析的核心任务之一。脑磁共振成像(MRI)的自动分割可用于可视化和跟踪由于正常衰老或疾病可能发生的脑解剖结构变化。机器学习技术广泛应用于自动结构分割。然而,训练数据和测试数据之间的对比度变化使得分割算法难以产生一致的结果。为了解决这个问题,可以使用一种名为MR图像协调的图像到图像转换技术来匹配不同数据集之间的对比度。对于协调来说,在保持基础解剖结构的同时变换图像强度很重要。在本文中,我们提出了一种3D U-Net算法,用于从多个MR图像模态中分割丘脑,并研究协调对分割算法的影响。在两个数据集上有丘脑核的手动勾勒。然而,我们旨在分析另一个缺乏真实标签的大数据集中的丘脑。我们在一个有手动标签的数据集上训练了两个分割网络,一个使用未协调的图像,另一个使用协调的图像,并在另一个有手动标签的数据集上比较它们的性能。这两个数据组被诊断为两种脑部疾病,并采用相似的成像协议采集。协调目标是没有手动标签的大数据集,其成像协议也不同。在未协调和协调数据上训练的网络在对另一个数据集进行评估时没有显著差异;这表明图像协调可以保持解剖结构,并且不影响分割任务。这两个网络在协调目标数据集上进行了评估,在协调数据上训练的网络比在未协调数据上训练的网络表现出显著改进。因此,在协调数据上训练的网络提供了处理来自其他站点的大量数据的潜力,即使在没有特定站点训练数据的情况下。