Uribe-Patarroyo Néstor, Villiger Martin, Bouma Brett E
Opt Express. 2014 Oct 6;22(20):24411-29. doi: 10.1364/OE.22.024411.
Intensity-based techniques in optical coherence tomography (OCT), such as those based on speckle decorrelation, have attracted great interest for biomedical and industrial applications requiring speed or flow information. In this work we present a rigorous analysis of the effects of noise on speckle decorrelation, demonstrate that these effects frustrate accurate speed quantitation, and propose new techniques that achieve quantitative and repeatable measurements. First, we derive the effect of background noise on the speckle autocorrelation function, finding two detrimental effects of noise. We propose a new autocorrelation function that is immune to the main effect of background noise and permits quantitative measurements at high and moderate signal-to-noise ratios. At the same time, this autocorrelation function is able to provide motion contrast information that accurately identifies areas with movement, similar to speckle variance techniques. In order to extend the SNR range, we quantify and model the second effect of background noise on the autocorrelation function through a calibration. By obtaining an explicit expression for the decorrelation time as a function of speed and diffusion, we show how to use our autocorrelation function and noise calibration to measure a flowing liquid. We obtain accurate results, which are validated by Doppler OCT, and demonstrate a very high dynamic range (> 600 mm/s) compared to that of Doppler OCT (±25 mm/s). We also derive the behavior for low flows, and show that there is an inherent non-linearity in speed measurements in the presence of diffusion due to statistical fluctuations of speckle. Our technique allows quantitative and robust measurements of speeds using OCT, and this work delimits precisely the conditions in which it is accurate.
光学相干断层扫描(OCT)中基于强度的技术,例如基于散斑去相关的技术,在需要速度或流量信息的生物医学和工业应用中引起了极大的关注。在这项工作中,我们对噪声对散斑去相关的影响进行了严格分析,证明这些影响阻碍了准确的速度定量,并提出了实现定量和可重复测量的新技术。首先,我们推导了背景噪声对散斑自相关函数的影响,发现了噪声的两个有害影响。我们提出了一种新的自相关函数,它不受背景噪声的主要影响,并允许在高和中等信噪比下进行定量测量。同时,这种自相关函数能够提供运动对比度信息,准确识别有运动的区域,类似于散斑方差技术。为了扩展信噪比范围,我们通过校准对背景噪声对自相关函数的第二个影响进行了量化和建模。通过获得去相关时间作为速度和扩散函数的显式表达式,我们展示了如何使用我们的自相关函数和噪声校准来测量流动液体。我们获得了准确的结果,这些结果通过多普勒OCT得到了验证,并且与多普勒OCT(±25 mm/s)相比,展示了非常高的动态范围(> 600 mm/s)。我们还推导了低流量情况下的行为,并表明在存在扩散的情况下,由于散斑的统计波动,速度测量中存在固有的非线性。我们的技术允许使用OCT对速度进行定量和稳健的测量,并且这项工作精确地界定了其准确的条件。