Zhelkovsky Alexander M, McReynolds Larry A
From the Division of RNA Biology, New England Biolabs, Inc., Ipswich, Massachusetts 01938.
From the Division of RNA Biology, New England Biolabs, Inc., Ipswich, Massachusetts 01938
J Biol Chem. 2014 Nov 28;289(48):33608-16. doi: 10.1074/jbc.M114.612929. Epub 2014 Oct 16.
RNA and DNA ligases catalyze the formation of a phosphodiester bond between the 5'-phosphate and 3'-hydroxyl ends of nucleic acids. In this work, we describe the ability of the thermophilic RNA ligase MthRnl from Methanobacterium thermoautotrophicum to recognize and modify the 3'-terminal phosphate of RNA and single-stranded DNA (ssDNA). This ligase can use an RNA 3'p substrate to generate an RNA 2',3'-cyclic phosphate or convert DNA3'p to ssDNA(3')pp(5')A. An RNA ligase from the Thermus scotoductus bacteriophage TS2126 and a predicted T4 Rnl1-like protein from Thermovibrio ammonificans, TVa, were also able to adenylate ssDNA 3'p. These modifications of RNA and DNA 3'-phosphates are similar to the activities of RtcA, an RNA 3'-phosphate cyclase. The initial step involves adenylation of the enzyme by ATP, which is then transferred to either RNA 3'p or DNA 3'p to generate the adenylated intermediate. For RNA (3')pp(5')A, the third step involves attack of the adjacent 2' hydroxyl to generate the RNA 2',3'-cyclic phosphate. These steps are analogous to those in classical 5' phosphate ligation. MthRnl and TS2126 RNA ligases were not able to modify a 3'p in nicked double-stranded DNA. However, T4 DNA ligase and RtcA can use 3'-phosphorylated nicks in double-stranded DNA to produce a 3'-adenylated product. These 3'-terminal phosphate-adenylated intermediates are substrates for deadenylation by yeast 5'Deadenylase. Our findings that classic ligases can duplicate the adenylation and phosphate cyclization activity of RtcA suggests that they have an essential role in metabolism of nucleic acids with 3'-terminal phosphates.
RNA和DNA连接酶催化核酸5'-磷酸末端与3'-羟基末端之间磷酸二酯键的形成。在本研究中,我们描述了嗜热自养甲烷杆菌的嗜热RNA连接酶MthRnl识别并修饰RNA和单链DNA(ssDNA)3'-末端磷酸基团的能力。这种连接酶可以利用RNA 3'p底物生成RNA 2',3'-环磷酸酯,或将DNA3'p转化为ssDNA(3')pp(5')A。来自嗜热栖热放线菌噬菌体TS2126的一种RNA连接酶以及来自氨化热弧菌的一种预测的T4 Rnl1样蛋白TVa,也能够使ssDNA 3'p腺苷酸化。RNA和DNA 3'-磷酸基团的这些修饰类似于RNA 3'-磷酸环化酶RtcA的活性。第一步涉及ATP对酶的腺苷酸化,然后将其转移至RNA 3'p或DNA 3'p以生成腺苷酸化中间体。对于RNA (3')pp(5')A,第三步涉及相邻2'羟基的攻击以生成RNA 2',3'-环磷酸酯。这些步骤类似于经典的5'磷酸连接中的步骤。MthRnl和TS2126 RNA连接酶无法修饰带切口的双链DNA中的3'p。然而,T4 DNA连接酶和RtcA可以利用双链DNA中3'-磷酸化的切口生成3'-腺苷酸化产物。这些3'-末端磷酸腺苷酸化中间体是酵母5'去腺苷酸酶去腺苷酸化的底物。我们发现经典连接酶可以复制RtcA的腺苷酸化和磷酸环化活性,这表明它们在具有3'-末端磷酸基团的核酸代谢中起重要作用。