Caffrey James R, Hughes Barry D, Britto Joanne M, Landman Kerry A
Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia.
Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
PLoS One. 2014 Oct 21;9(10):e110415. doi: 10.1371/journal.pone.0110415. eCollection 2014.
The characteristic six-layered appearance of the neocortex arises from the correct positioning of pyramidal neurons during development and alterations in this process can cause intellectual disabilities and developmental delay. Malformations in cortical development arise when neurons either fail to migrate properly from the germinal zones or fail to cease migration in the correct laminar position within the cortical plate. The Reelin signalling pathway is vital for correct neuronal positioning as loss of Reelin leads to a partially inverted cortex. The precise biological function of Reelin remains controversial and debate surrounds its role as a chemoattractant or stop signal for migrating neurons. To investigate this further we developed an in silico agent-based model of cortical layer formation. Using this model we tested four biologically plausible hypotheses for neuron motility and four biologically plausible hypotheses for the loss of neuron motility (conversion from migration). A matrix of 16 combinations of motility and conversion rules was applied against the known structure of mouse cortical layers in the wild-type cortex, the Reelin-null mutant, the Dab1-null mutant and a conditional Dab1 mutant. Using this approach, many combinations of motility and conversion mechanisms can be rejected. For example, the model does not support Reelin acting as a repelling or as a stopping signal. In contrast, the study lends very strong support to the notion that the glycoprotein Reelin acts as a chemoattractant for neurons. Furthermore, the most viable proposition for the conversion mechanism is one in which conversion is affected by a motile neuron sensing in the near vicinity neurons that have already converted. Therefore, this model helps elucidate the function of Reelin during neuronal migration and cortical development.
新皮质特有的六层结构外观源于发育过程中锥体神经元的正确定位,这一过程中的改变会导致智力残疾和发育迟缓。当神经元要么未能从生发区正常迁移,要么未能在皮质板内正确的层状位置停止迁移时,就会出现皮质发育畸形。Reelin信号通路对神经元的正确定位至关重要,因为Reelin缺失会导致皮质部分倒置。Reelin的确切生物学功能仍存在争议,围绕其作为迁移神经元的化学引诱剂或停止信号的作用存在争论。为了进一步研究这一点,我们开发了一种基于计算机模拟的皮质层形成模型。利用这个模型,我们测试了关于神经元运动性的四个生物学上合理的假设和关于神经元运动性丧失(从迁移转变)的四个生物学上合理的假设。将16种运动性和转变规则组合的矩阵应用于野生型皮质、Reelin基因敲除突变体、Dab1基因敲除突变体和条件性Dab1突变体中小鼠皮质层的已知结构。通过这种方法,可以排除许多运动性和转变机制的组合。例如,该模型不支持Reelin作为排斥信号或停止信号。相比之下,该研究为糖蛋白Reelin作为神经元的化学引诱剂这一观点提供了非常有力的支持。此外,关于转变机制最可行的观点是,转变受正在迁移的神经元感知附近已转变的神经元的影响。因此,这个模型有助于阐明Reelin在神经元迁移和皮质发育过程中的功能。