Suppr超能文献

具有宿主免疫蛋白MACPF结构域的肠道共生菌脆弱拟杆菌的一种抗菌蛋白。

An antimicrobial protein of the gut symbiont Bacteroides fragilis with a MACPF domain of host immune proteins.

作者信息

Chatzidaki-Livanis Maria, Coyne Michael J, Comstock Laurie E

机构信息

Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA.

出版信息

Mol Microbiol. 2014 Dec;94(6):1361-74. doi: 10.1111/mmi.12839. Epub 2014 Nov 14.

Abstract

Bacteroidales are the most abundant Gram-negative bacteria of the human intestinal microbiota comprising more than half of the bacteria in many individuals. Some of the factors that these bacteria use to establish and maintain themselves in this ecosystem are beginning to be identified. However, ecological competition, especially interference competition where one organism directly harms another, is largely unexplored. To begin to understand the relevance of this ecological principle as it applies to these abundant gut bacteria and factors that may promote such competition, we screened Bacteroides fragilis for the production of antimicrobial molecules. We found that the production of extracellularly secreted antimicrobial molecules is widespread in this species. The first identified molecule, described in this manuscript, contains a membrane attack complex/perforin (MACPF) domain present in host immune molecules that kill bacteria and virally infected cells by pore formation, and mutations affecting key residues of this domain abrogated its activity. This antimicrobial molecule, termed BSAP-1, is secreted from the cell in outer membrane vesicles and no additional proteins are required for its secretion, processing or immunity of the producing cell. This study provides the first insight into secreted molecules that promote competitive interference among Bacteroidales strains of the human gut.

摘要

拟杆菌目是人类肠道微生物群中最丰富的革兰氏阴性菌,在许多个体中占细菌总数的一半以上。这些细菌在这个生态系统中建立和维持自身的一些因素已开始被识别。然而,生态竞争,尤其是一种生物直接伤害另一种生物的干扰竞争,在很大程度上尚未得到探索。为了开始理解这一生态原理对这些丰富的肠道细菌以及可能促进这种竞争的因素的相关性,我们筛选了脆弱拟杆菌是否产生抗菌分子。我们发现,细胞外分泌抗菌分子的产生在该物种中很普遍。本手稿中描述的第一个被鉴定的分子含有膜攻击复合物/穿孔素(MACPF)结构域,该结构域存在于宿主免疫分子中,通过形成孔道杀死细菌和病毒感染的细胞,影响该结构域关键残基 的突变会消除其活性。这种抗菌分子被称为BSAP-1,它从细胞分泌到外膜囊泡中,其分泌、加工或产生细胞的免疫不需要额外的蛋白质。这项研究首次深入了解了促进人类肠道拟杆菌目菌株间竞争性干扰的分泌分子。

相似文献

1
An antimicrobial protein of the gut symbiont Bacteroides fragilis with a MACPF domain of host immune proteins.
Mol Microbiol. 2014 Dec;94(6):1361-74. doi: 10.1111/mmi.12839. Epub 2014 Nov 14.
4
Identification of a Fifth Antibacterial Toxin Produced by a Single Bacteroides fragilis Strain.
J Bacteriol. 2019 Mar 26;201(8). doi: 10.1128/JB.00577-18. Print 2019 Apr 15.
5
Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3627-32. doi: 10.1073/pnas.1522510113. Epub 2016 Mar 7.
6
Structure of a membrane-attack complex/perforin (MACPF) family protein from the human gut symbiont Bacteroides thetaiotaomicron.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Oct 1;66(Pt 10):1297-305. doi: 10.1107/S1744309110023055. Epub 2010 Jul 31.
7
Acquisition of MACPF domain-encoding genes is the main contributor to LPS glycan diversity in gut Bacteroides species.
ISME J. 2018 Dec;12(12):2919-2928. doi: 10.1038/s41396-018-0244-4. Epub 2018 Jul 31.
8
The structure and function of mammalian membrane-attack complex/perforin-like proteins.
Tissue Antigens. 2010 Nov;76(5):341-51. doi: 10.1111/j.1399-0039.2010.01566.x. Epub 2010 Sep 22.
10
The Membrane Attack Complex/Perforin Superfamily.
J Mol Microbiol Biotechnol. 2017;27(4):252-267. doi: 10.1159/000481286. Epub 2017 Nov 17.

引用本文的文献

2
Working together: gut microbe-microbe interactions shape host inflammation.
Infect Immun. 2025 Jul 8;93(7):e0051224. doi: 10.1128/iai.00512-24. Epub 2025 Jun 13.
3
Interbacterial warfare in the human gut: insights from Bacteroidales' perspective.
Gut Microbes. 2025 Dec;17(1):2473522. doi: 10.1080/19490976.2025.2473522. Epub 2025 Mar 4.
4
Proteogenomic annotation of T6SS components identified in secretome.
Front Microbiol. 2025 Feb 11;16:1495971. doi: 10.3389/fmicb.2025.1495971. eCollection 2025.
5
Gut microbiota strain richness is species specific and affects engraftment.
Nature. 2025 Jan;637(8045):422-429. doi: 10.1038/s41586-024-08242-x. Epub 2024 Nov 27.
6
A ubiquitous mobile genetic element changes the antagonistic weaponry of a human gut symbiont.
Science. 2024 Oct 25;386(6720):414-420. doi: 10.1126/science.adj9504. Epub 2024 Oct 24.
8
Bacterial extracellular vesicles at the interface of gut microbiota and immunity.
Gut Microbes. 2024 Jan-Dec;16(1):2396494. doi: 10.1080/19490976.2024.2396494. Epub 2024 Sep 28.
9
Comprehensive analyses of a large human gut Bacteroidales culture collection reveal species- and strain-level diversity and evolution.
Cell Host Microbe. 2024 Oct 9;32(10):1853-1867.e5. doi: 10.1016/j.chom.2024.08.016. Epub 2024 Sep 17.
10
Research trends of next generation probiotics.
Food Sci Biotechnol. 2024 Jun 24;33(9):2111-2121. doi: 10.1007/s10068-024-01626-9. eCollection 2024 Jul.

本文引用的文献

1
CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP.
Evolution. 1985 Jul;39(4):783-791. doi: 10.1111/j.1558-5646.1985.tb00420.x.
2
A type VI secretion-related pathway in Bacteroidetes mediates interbacterial antagonism.
Cell Host Microbe. 2014 Aug 13;16(2):227-236. doi: 10.1016/j.chom.2014.07.007. Epub 2014 Jul 25.
3
Evidence of extensive DNA transfer between bacteroidales species within the human gut.
mBio. 2014 Jun 17;5(3):e01305-14. doi: 10.1128/mBio.01305-14.
5
An ecological network of polysaccharide utilization among human intestinal symbionts.
Curr Biol. 2014 Jan 6;24(1):40-49. doi: 10.1016/j.cub.2013.10.077. Epub 2013 Dec 12.
6
MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.
Mol Biol Evol. 2013 Dec;30(12):2725-9. doi: 10.1093/molbev/mst197. Epub 2013 Oct 16.
7
The long-term stability of the human gut microbiota.
Science. 2013 Jul 5;341(6141):1237439. doi: 10.1126/science.1237439.
8
Competition sensing: the social side of bacterial stress responses.
Nat Rev Microbiol. 2013 Apr;11(4):285-93. doi: 10.1038/nrmicro2977. Epub 2013 Mar 4.
9
Bacteriocins - a viable alternative to antibiotics?
Nat Rev Microbiol. 2013 Feb;11(2):95-105. doi: 10.1038/nrmicro2937. Epub 2012 Dec 24.
10
GenBank.
Nucleic Acids Res. 2013 Jan;41(Database issue):D36-42. doi: 10.1093/nar/gks1195. Epub 2012 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验