Wojtera Emilia, Konior Anna, Fedoryszak-Kuśka Natalia, Beręsewicz Andrzej
Department of Clinical Physiology, Postgraduate Medical School, Warsaw 01-813, Poland.
Int J Mol Sci. 2014 Oct 27;15(11):19417-43. doi: 10.3390/ijms151119417.
We hypothesized that, due to a cross-talk between cytoplasmic O2--sources and intraluminally expressed xanthine oxidase (XO), intraluminal O2- is instrumental in mediating intraluminal (endothelial dysfunction) and cytosolic (p38 and ERK1/2 MAPKs phosphorylation) manifestations of vascular oxidative stress induced by endothelin-1 (ET-1) and angiotensin II (AT-II). Isolated guinea-pig hearts were subjected to 10-min agonist perfusion causing a burst of an intraluminal O2-. ET-1 antagonist, tezosentan, attenuated AT-II-mediated O2-, indicating its partial ET-1 mediation. ET-1 and Ang-T (AT-II+tezosentan) triggered intraluminal O2-, endothelial dysfunction, MAPKs and p47phox phosphorylation, and NADPH oxidase (Nox) and XO activation. These effects were: (i) prevented by blocking PKC (chelerythrine), Nox (apocynin), mitochondrial ATP-dependent K+ channel (5-HD), complex II (TTFA), and XO (allopurinol); (ii) mimicked by the activation of Nox (NADH); and mitochondria (diazoxide, 3-NPA) and (iii) the effects by NADH were prevented by 5-HD, TTFA and chelerythrine, and those by diazoxide and 3-NPA by apocynin and chelerythrine, suggesting that the agonists coactivate Nox and mitochondria, which further amplify their activity via PKC. The effects by ET-1, Ang-T, NADH, diazoxide, and 3-NPA were opposed by blocking intraluminal O2- (SOD) and XO, and were mimicked by XO activation (hypoxanthine). Apocynin, TTFA, chelerythrine, and SOD opposed the effects by hypoxanthine. In conclusion, oxidative stress by agonists involves cellular inside-out and outside-in signaling in which Nox-mitochondria-PKC system and XO mutually maintain their activities via the intraluminal O2-.
我们推测,由于细胞质O₂⁻来源与管腔内表达的黄嘌呤氧化酶(XO)之间存在相互作用,管腔内的O₂⁻在介导由内皮素-1(ET-1)和血管紧张素II(AT-II)诱导的血管氧化应激的管腔内(内皮功能障碍)和胞质内(p38和ERK1/2丝裂原活化蛋白激酶磷酸化)表现中起作用。分离的豚鼠心脏接受10分钟的激动剂灌注,导致管腔内O₂⁻的爆发。ET-1拮抗剂替唑生坦减弱了AT-II介导的O₂⁻,表明其部分由ET-1介导。ET-1和Ang-T(AT-II + 替唑生坦)引发管腔内O₂⁻、内皮功能障碍、丝裂原活化蛋白激酶和p47phox磷酸化,以及NADPH氧化酶(Nox)和XO活化。这些效应:(i)通过阻断蛋白激酶C(白屈菜红碱)、Nox(阿朴吗啡)、线粒体ATP依赖性钾通道(5-羟基癸酸)、复合物II(噻吩甲酰三氟丙酮)和XO(别嘌呤醇)而被阻止;(ii)通过激活Nox(NADH)和线粒体(二氮嗪、3-硝基丙酸)而被模拟;(iii)NADH的效应被5-羟基癸酸、噻吩甲酰三氟丙酮和白屈菜红碱阻止,二氮嗪和3-硝基丙酸的效应被阿朴吗啡和白屈菜红碱阻止,这表明激动剂共同激活Nox和线粒体,它们通过蛋白激酶C进一步放大其活性。ET-1、Ang-T、NADH、二氮嗪和3-硝基丙酸的效应通过阻断管腔内O₂⁻(超氧化物歧化酶)和XO而被对抗,并被XO活化(次黄嘌呤)模拟。阿朴吗啡、噻吩甲酰三氟丙酮、白屈菜红碱和超氧化物歧化酶对抗次黄嘌呤的效应。总之,激动剂引起的氧化应激涉及细胞由内而外和由外而内的信号传导,其中Nox-线粒体-蛋白激酶C系统和XO通过管腔内的O₂⁻相互维持其活性。