Suppr超能文献

边际效应入门——第二部分:卫生服务研究应用

A primer on marginal effects-part II: health services research applications.

作者信息

Onukwugha E, Bergtold J, Jain R

机构信息

Department of Pharmaceutical Health Services Research, University of Maryland School of Pharmacy, 220 Arch Street, 12th Floor, 21201, Baltimore, MD, USA,

出版信息

Pharmacoeconomics. 2015 Feb;33(2):97-103. doi: 10.1007/s40273-014-0224-0.

Abstract

Marginal analysis evaluates changes in a regression function associated with a unit change in a relevant variable. The primary statistic of marginal analysis is the marginal effect (ME). The ME facilitates the examination of outcomes for defined patient profiles or individuals while measuring the change in original units (e.g., costs, probabilities). The ME has a long history in economics; however, it is not widely used in health services research despite its flexibility and ability to provide unique insights. This article, the second in a two-part series, discusses practical issues that arise in the estimation and interpretation of the ME for a variety of regression models often used in health services research. Part one provided an overview of prior studies discussing ME followed by derivation of ME formulas for various regression models relevant for health services research studies examining costs and utilization. The current article illustrates the calculation and interpretation of ME in practice and discusses practical issues that arise during the implementation, including: understanding differences between software packages in terms of functionality available for calculating the ME and its confidence interval, interpretation of average marginal effect versus marginal effect at the mean, and the difference between ME and relative effects (e.g., odds ratio). Programming code to calculate ME using SAS, STATA, LIMDEP, and MATLAB are also provided. The illustration, discussion, and application of ME in this two-part series support the conduct of future studies applying the concept of marginal analysis.

摘要

边际分析评估与相关变量的单位变化相关的回归函数的变化。边际分析的主要统计量是边际效应(ME)。边际效应有助于在测量原始单位(如成本、概率)变化时,对特定患者概况或个体的结果进行检验。边际效应在经济学中有悠久的历史;然而,尽管它具有灵活性并能提供独特的见解,但在卫生服务研究中并未得到广泛应用。本文是一个两部分系列文章的第二篇,讨论了在卫生服务研究中常用的各种回归模型的边际效应估计和解释中出现的实际问题。第一部分概述了先前讨论边际效应的研究,随后推导了与研究成本和利用率的卫生服务研究相关的各种回归模型的边际效应公式。本文阐述了边际效应在实践中的计算和解释,并讨论了实施过程中出现的实际问题,包括:了解不同软件包在计算边际效应及其置信区间方面的功能差异、平均边际效应与均值处边际效应的解释,以及边际效应与相对效应(如比值比)之间的差异。还提供了使用SAS、STATA、LIMDEP和MATLAB计算边际效应的编程代码。这个两部分系列文章中对边际效应的阐述、讨论和应用,为未来应用边际分析概念的研究提供了支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验