Suppr超能文献

无金标准的诊断准确性研究的Meta分析模型的统一

A unification of models for meta-analysis of diagnostic accuracy studies without a gold standard.

作者信息

Liu Yulun, Chen Yong, Chu Haitao

机构信息

Division of Biostatistics, The University of Texas School of Public Health, Houston, Texas 77030, U.S.A.

Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, Minnesota 55455, U.S.A.

出版信息

Biometrics. 2015 Jun;71(2):538-47. doi: 10.1111/biom.12264. Epub 2014 Oct 30.

Abstract

Several statistical methods for meta-analysis of diagnostic accuracy studies have been discussed in the presence of a gold standard. However, in practice, the selected reference test may be imperfect due to measurement error, non-existence, invasive nature, or expensive cost of a gold standard. It has been suggested that treating an imperfect reference test as a gold standard can lead to substantial bias in the estimation of diagnostic test accuracy. Recently, two models have been proposed to account for imperfect reference test, namely, a multivariate generalized linear mixed model (MGLMM) and a hierarchical summary receiver operating characteristic (HSROC) model. Both models are very flexible in accounting for heterogeneity in accuracies of tests across studies as well as the dependence between tests. In this article, we show that these two models, although with different formulations, are closely related and are equivalent in the absence of study-level covariates. Furthermore, we provide the exact relations between the parameters of these two models and assumptions under which two models can be reduced to equivalent submodels. On the other hand, we show that some submodels of the MGLMM do not have corresponding equivalent submodels of the HSROC model, and vice versa. With three real examples, we illustrate the cases when fitting the MGLMM and HSROC models leads to equivalent submodels and hence identical inference, and the cases when the inferences from two models are slightly different. Our results generalize the important relations between the bivariate generalized linear mixed model and HSROC model when the reference test is a gold standard.

摘要

在存在金标准的情况下,已经讨论了几种用于诊断准确性研究的荟萃分析的统计方法。然而,在实际中,由于金标准存在测量误差、不存在、具有侵入性或成本高昂等原因,所选的参考测试可能并不完美。有人提出,将不完美的参考测试视为金标准可能会在诊断测试准确性的估计中导致重大偏差。最近,已经提出了两种模型来处理不完美的参考测试,即多变量广义线性混合模型(MGLMM)和分层汇总接受者操作特征(HSROC)模型。这两种模型在考虑不同研究中测试准确性的异质性以及测试之间的相关性方面都非常灵活。在本文中,我们表明这两种模型虽然形式不同,但密切相关,并且在没有研究水平协变量的情况下是等效的。此外,我们提供了这两种模型参数之间的确切关系以及在何种假设下两种模型可以简化为等效子模型。另一方面,我们表明MGLMM的一些子模型没有对应的HSROC模型的等效子模型,反之亦然。通过三个实际例子,我们说明了拟合MGLMM和HSROC模型导致等效子模型并因此得出相同推断的情况,以及两种模型的推断略有不同的情况。我们的结果推广了参考测试为金标准时双变量广义线性混合模型和HSROC模型之间的重要关系。

相似文献

6
A unification of models for meta-analysis of diagnostic accuracy studies.诊断准确性研究的Meta分析模型的统一
Biostatistics. 2007 Apr;8(2):239-51. doi: 10.1093/biostatistics/kxl004. Epub 2006 May 11.

引用本文的文献

本文引用的文献

2
Multivariate meta-analysis: potential and promise.多变量荟萃分析:潜力与前景。
Stat Med. 2011 Sep 10;30(20):2481-98. doi: 10.1002/sim.4172. Epub 2011 Jan 26.
8
A unification of models for meta-analysis of diagnostic accuracy studies.诊断准确性研究的Meta分析模型的统一
Biostatistics. 2007 Apr;8(2):239-51. doi: 10.1093/biostatistics/kxl004. Epub 2006 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验