Suppr超能文献

通过社交媒体语言进行自动人格评估。

Automatic personality assessment through social media language.

作者信息

Park Gregory, Schwartz H Andrew, Eichstaedt Johannes C, Kern Margaret L, Kosinski Michal, Stillwell David J, Ungar Lyle H, Seligman Martin E P

机构信息

Department of Psychology.

Computer & Information Science, University of Pennsylvania.

出版信息

J Pers Soc Psychol. 2015 Jun;108(6):934-52. doi: 10.1037/pspp0000020. Epub 2014 Nov 3.

Abstract

Language use is a psychologically rich, stable individual difference with well-established correlations to personality. We describe a method for assessing personality using an open-vocabulary analysis of language from social media. We compiled the written language from 66,732 Facebook users and their questionnaire-based self-reported Big Five personality traits, and then we built a predictive model of personality based on their language. We used this model to predict the 5 personality factors in a separate sample of 4,824 Facebook users, examining (a) convergence with self-reports of personality at the domain- and facet-level; (b) discriminant validity between predictions of distinct traits; (c) agreement with informant reports of personality; (d) patterns of correlations with external criteria (e.g., number of friends, political attitudes, impulsiveness); and (e) test-retest reliability over 6-month intervals. Results indicated that language-based assessments can constitute valid personality measures: they agreed with self-reports and informant reports of personality, added incremental validity over informant reports, adequately discriminated between traits, exhibited patterns of correlations with external criteria similar to those found with self-reported personality, and were stable over 6-month intervals. Analysis of predictive language can provide rich portraits of the mental life associated with traits. This approach can complement and extend traditional methods, providing researchers with an additional measure that can quickly and cheaply assess large groups of participants with minimal burden.

摘要

语言使用是一种在心理层面丰富且稳定的个体差异,与人格有着既定的关联。我们描述了一种通过对社交媒体语言进行开放词汇分析来评估人格的方法。我们收集了66732名脸书用户的书面语言以及他们基于问卷的自我报告的大五人格特质,然后基于他们的语言构建了一个人格预测模型。我们使用这个模型在一个由4824名脸书用户组成的独立样本中预测五个人格因素,考察了:(a) 在领域和层面上与人格自我报告的趋同性;(b) 不同特质预测之间的区分效度;(c) 与人格信息提供者报告的一致性;(d) 与外部标准(如朋友数量、政治态度、冲动性)的相关模式;以及(e) 6个月间隔的重测信度。结果表明,基于语言的评估可以构成有效的人格测量:它们与人格的自我报告和信息提供者报告一致,比信息提供者报告增加了增量效度,能够充分区分不同特质,呈现出与外部标准的相关模式,类似于自我报告人格所发现的模式,并且在6个月间隔内是稳定的。对预测性语言的分析可以提供与特质相关的丰富心理生活画像。这种方法可以补充和扩展传统方法,为研究人员提供一种额外的测量手段,能够以最小的负担快速且廉价地评估大量参与者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验