Suppr超能文献

癌症相关网络的网络分析揭示了不同的网络关联模式。

Network Analysis of Cancer-focused Association Network Reveals Distinct Network Association Patterns.

作者信息

Zhang Yuji, Tao Cui

机构信息

Division of Biostatistics and Bioinformatics, University of Maryland Greenebaum Cancer Center, Baltimore, MD, USA. ; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, USA.

School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA.

出版信息

Cancer Inform. 2014 Oct 16;13(Suppl 3):45-51. doi: 10.4137/CIN.S14033. eCollection 2014.

Abstract

Cancer is a complex and heterogeneous disease. Genetic methods have uncovered thousands of complex tissue-specific mutation-induced effects and identified multiple disease gene targets. Important associations between cancer and other biological entities (eg, genes and drugs) in cancer network, however, are usually scattered in biomedical publications. Systematic analyses of these cancer-specific associations can help highlight the hidden associations between different cancer types and related genes/drugs. In this paper, we proposed a novel network-based computational framework to identify statistically over-expressed subnetwork patterns called network motifs (NMs) in an integrated cancer-specific drug-disease-gene network extracted from Semantic MEDLINE, a database containing extracted associations from MEDLINE abstracts. Eight significant NMs were identified and considered as the backbone of the cancer association network. Each NM corresponds to specific biological meanings. We demonstrated that such approaches will facilitate the formulization of novel cancer research hypotheses, which is critical for translational medicine research and personalized medicine in cancer.

摘要

癌症是一种复杂的异质性疾病。遗传学方法已揭示出数千种复杂的组织特异性突变诱导效应,并确定了多个疾病基因靶点。然而,癌症网络中癌症与其他生物实体(如基因和药物)之间的重要关联通常分散在生物医学出版物中。对这些癌症特异性关联进行系统分析有助于凸显不同癌症类型与相关基因/药物之间隐藏的关联。在本文中,我们提出了一种基于网络的新型计算框架,以在从语义医学文献数据库(Semantic MEDLINE)提取的综合癌症特异性药物-疾病-基因网络中识别被称为网络模体(NMs)的统计上过度表达的子网模式,该数据库包含从医学文献数据库摘要中提取的关联。我们识别出了八个显著的网络模体,并将其视为癌症关联网络的主干。每个网络模体都对应特定的生物学意义。我们证明,此类方法将有助于形成新的癌症研究假设,这对于癌症的转化医学研究和个性化医疗至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26e8/4214591/bd399fe8d04b/cin-suppl.3-2014-045f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验