Suppr超能文献

用于灌注细胞培养的具有三维相互连通微孔壁的聚苯乙烯基微流控装置。

A polystyrene-based microfluidic device with three-dimensional interconnected microporous walls for perfusion cell culture.

机构信息

Department of Engineering Science and Mechanics, The Pennsylvania State University , University Park, Pennsylvania 16802, USA.

Science & Technology, Corning Incorporated , Corning, New York 14831, USA.

出版信息

Biomicrofluidics. 2014 Aug 27;8(4):046505. doi: 10.1063/1.4894409. eCollection 2014 Jul.

Abstract

In this article, we present a simple, rapid prototyped polystyrene-based microfluidic device with three-dimensional (3D) interconnected microporous walls for long term perfusion cell culture. Patterned 3D interconnected microporous structures were created by a chemical treatment together with a protective mask and the native hydrophobic nature of the microporous structures were selectively made hydrophilic using oxygen plasma treatment together with a protective mask. Using this polystyrene-based cell culture microfluidic device, we successfully demonstrated the support of four days perfusion cell culture of hepatocytes (C3A cells).

摘要

本文提出了一种简单、快速原型化的基于聚苯乙烯的微流控装置,具有三维(3D)互连的微孔壁,用于长期灌注细胞培养。通过化学处理、保护罩以及微孔结构的固有疏水性,共同创造出具有图案的 3D 互连微孔结构,然后使用氧气等离子体处理和保护罩,选择性地将其亲水化。使用这种基于聚苯乙烯的细胞培养微流控装置,我们成功地演示了支持肝实质细胞(C3A 细胞)四天灌注培养的能力。

相似文献

1
A polystyrene-based microfluidic device with three-dimensional interconnected microporous walls for perfusion cell culture.
Biomicrofluidics. 2014 Aug 27;8(4):046505. doi: 10.1063/1.4894409. eCollection 2014 Jul.
2
Flexible microfluidic devices with three-dimensional interconnected microporous walls for gas and liquid applications.
Lab Chip. 2011 Oct 7;11(19):3249-55. doi: 10.1039/c1lc20157c. Epub 2011 Aug 11.
3
Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
Lab Chip. 2011 Apr 21;11(8):1541-4. doi: 10.1039/c0lc00660b. Epub 2011 Feb 28.
4
A 3D printed microfluidic perfusion device for multicellular spheroid cultures.
Biofabrication. 2017 Sep 11;9(4):045005. doi: 10.1088/1758-5090/aa8858.
6
A pump-free microfluidic 3D perfusion platform for the efficient differentiation of human hepatocyte-like cells.
Biotechnol Bioeng. 2017 Oct;114(10):2360-2370. doi: 10.1002/bit.26341. Epub 2017 Jun 27.
8
Reconstruction of Hepatic Tissue Structures Using Interstitial Flow in a Microfluidic Device.
Methods Mol Biol. 2019;1905:167-174. doi: 10.1007/978-1-4939-8961-4_15.
9
Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
Biotechnol J. 2014 Jul;9(7):971-9. doi: 10.1002/biot.201300559. Epub 2014 Jun 12.
10
Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
Biotechnol Prog. 2004 May-Jun;20(3):750-5. doi: 10.1021/bp0300568.

引用本文的文献

2
MatriGrid Based Biological Morphologies: Tools for 3D Cell Culturing.
Bioengineering (Basel). 2022 May 20;9(5):220. doi: 10.3390/bioengineering9050220.
3
Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices.
Biosensors (Basel). 2020 Nov 19;10(11):182. doi: 10.3390/bios10110182.
4
Microphysiological Systems: Design, Fabrication, and Applications.
ACS Biomater Sci Eng. 2020 Jun 8;6(6):3231-3257. doi: 10.1021/acsbiomaterials.9b01667. Epub 2020 May 10.
5
Organ-on-a-chip engineering: Toward bridging the gap between lab and industry.
Biomicrofluidics. 2020 Jul 14;14(4):041501. doi: 10.1063/5.0011583. eCollection 2020 Jul.
6
The Evolution of Polystyrene as a Cell Culture Material.
Tissue Eng Part B Rev. 2018 Oct;24(5):359-372. doi: 10.1089/ten.TEB.2018.0056.
7
Hydrogel-based microfluidic incubator for microorganism cultivation and analyses.
Biomicrofluidics. 2015 Feb 27;9(1):014127. doi: 10.1063/1.4913647. eCollection 2015 Jan.

本文引用的文献

1
Accelerating drug discovery via organs-on-chips.
Lab Chip. 2013 Dec 21;13(24):4697-710. doi: 10.1039/c3lc90115g.
2
Microengineered physiological biomimicry: organs-on-chips.
Lab Chip. 2012 Jun 21;12(12):2156-64. doi: 10.1039/c2lc40089h. Epub 2012 May 3.
3
Engineers are from PDMS-land, Biologists are from Polystyrenia.
Lab Chip. 2012 Apr 7;12(7):1224-37. doi: 10.1039/c2lc20982a. Epub 2012 Feb 8.
4
From 3D cell culture to organs-on-chips.
Trends Cell Biol. 2011 Dec;21(12):745-54. doi: 10.1016/j.tcb.2011.09.005. Epub 2011 Oct 25.
5
Flexible microfluidic devices with three-dimensional interconnected microporous walls for gas and liquid applications.
Lab Chip. 2011 Oct 7;11(19):3249-55. doi: 10.1039/c1lc20157c. Epub 2011 Aug 11.
6
Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device.
Biomicrofluidics. 2011 Jun;5(2):22212. doi: 10.1063/1.3580753. Epub 2011 Jun 29.
7
Exploitation of physical and chemical constraints for three-dimensional microtissue construction in microfluidics.
Biomicrofluidics. 2011 Jun;5(2):22203. doi: 10.1063/1.3593407. Epub 2011 Jun 29.
8
Microfluidic array for three-dimensional perfusion culture of human mammary epithelial cells.
Biomed Microdevices. 2011 Aug;13(4):753-8. doi: 10.1007/s10544-011-9545-3.
10
Tissue models: a living system on a chip.
Nature. 2011 Mar 31;471(7340):661-5. doi: 10.1038/471661a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验