Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015 Jan-Feb;7(1):69-97. doi: 10.1002/wnan.1303. Epub 2014 Nov 13.
In this review article, we describe recent progress in the field of protein-based bionanomaterial design with focus on the four well-characterized proteins: mammalian elastin and collagen, and insect-derived silk and resilin. These proteins are important structural components and understanding their physical and biochemical properties has allowed us to not only replicate them but also create novel smart materials. The 'smart' properties of a material include its ability to self-assemble, respond to stimuli, and/or promote cell interactions. Such properties can be attributed to unique structural modules from elastin, collagen, silk, and resilin as well as functional modules identified from other proteins directly or using display techniques such as phage display. Thus, the goal of this article is to not only emphasize the types of protein-based peptide modules and their uses but also encourage and inspire the reader to create new toolsets of smart polypeptides to overcome their challenges.
在这篇综述文章中,我们描述了蛋白质基生物纳米材料设计领域的最新进展,重点介绍了四种特征明确的蛋白质:哺乳动物弹性蛋白和胶原蛋白,以及昆虫来源的丝蛋白和 resilin。这些蛋白质是重要的结构成分,对它们的物理和生化特性的了解不仅使我们能够复制它们,还能够创造新的智能材料。材料的“智能”特性包括自组装、响应刺激和/或促进细胞相互作用的能力。这些特性可以归因于弹性蛋白、胶原蛋白、丝蛋白和 resilin 中的独特结构模块,以及直接或使用噬菌体展示等显示技术从其他蛋白质中鉴定出的功能模块。因此,本文的目的不仅是强调基于蛋白质的肽模块的类型及其用途,还鼓励和启发读者创建新的智能多肽工具集来克服它们的挑战。