Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.
1] Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA) - ARAID, and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018 Zaragoza, Spain [2] Transpyrenean Advanced Laboratory for Electron Microscopy (TALEM), CEMES - INA, CNRS - Universidad de Zaragoza, 30155 Toulouse, France.
Nature. 2014 Nov 20;515(7527):379-83. doi: 10.1038/nature13918.
Progress in nanotechnology requires new approaches to materials synthesis that make it possible to control material functionality down to the smallest scales. An objective of materials research is to achieve enhanced control over the physical properties of materials such as ferromagnets, ferroelectrics and superconductors. In this context, complex oxides and inorganic perovskites are attractive because slight adjustments of their atomic structures can produce large physical responses and result in multiple functionalities. In addition, these materials often contain ferroelastic domains. The intrinsic symmetry breaking that takes place at the domain walls can induce properties absent from the domains themselves, such as magnetic or ferroelectric order and other functionalities, as well as coupling between them. Moreover, large domain wall densities create intense strain gradients, which can also affect the material's properties. Here we show that, owing to large local stresses, domain walls can promote the formation of unusual phases. In this sense, the domain walls can function as nanoscale chemical reactors. We synthesize a two-dimensional ferromagnetic phase at the domain walls of the orthorhombic perovskite terbium manganite (TbMnO3), which was grown in thin layers under epitaxial strain on strontium titanate (SrTiO3) substrates. This phase is yet to be created by standard chemical routes. The density of the two-dimensional sheets can be tuned by changing the film thickness or the substrate lattice parameter (that is, the epitaxial strain), and the distance between sheets can be made as small as 5 nanometres in ultrathin films, such that the new phase at domain walls represents up to 25 per cent of the film volume. The general concept of using domain walls of epitaxial oxides to promote the formation of unusual phases may be applicable to other materials systems, thus giving access to new classes of nanoscale materials for applications in nanoelectronics and spintronics.
纳米技术的进展需要新的材料合成方法,使我们能够在最小的尺度上控制材料的功能。材料研究的一个目标是实现对材料物理性质的增强控制,例如铁磁体、铁电体和超导体。在这种情况下,复杂氧化物和无机钙钛矿由于其原子结构的微小调整可以产生较大的物理响应,并产生多种功能,因此具有吸引力。此外,这些材料通常包含铁弹性畴。畴壁处发生的固有对称破缺可以诱导畴本身不存在的性质,例如磁序或铁电序和其他功能,以及它们之间的耦合。此外,大的畴壁密度会产生强烈的应变梯度,这也会影响材料的性质。在这里,我们表明,由于局部应力较大,畴壁可以促进异常相的形成。从这个意义上说,畴壁可以作为纳米尺度的化学反应器。我们在钙钛矿钽锰矿(TbMnO3)的正交畴壁上合成了二维铁磁相,该相是在 SrTiO3 衬底上外延应变下生长的薄膜中形成的。通过标准化学途径尚未创造出这种相。通过改变薄膜厚度或衬底晶格参数(即外延应变)可以调整二维片的密度,并且在超薄薄膜中可以将片之间的距离减小到 5 纳米,使得畴壁处的新相最多占薄膜体积的 25%。使用外延氧化物的畴壁来促进异常相形成的一般概念可能适用于其他材料系统,从而为应用于纳米电子学和自旋电子学的新型纳米材料提供了途径。