Suppr超能文献

学习最小化努力与最大化回报:计算原理与神经关联。

Learning to minimize efforts versus maximizing rewards: computational principles and neural correlates.

机构信息

Motivation, Brain and Behavior Laboratory, Neuroimaging Research Center, Brain and Spine Institute, INSERM U975, CNRS UMR 7225, UPMC-P6 UMR S 1127, 7561 Paris Cedex 13, France.

Motivation, Brain and Behavior Laboratory, Neuroimaging Research Center, Brain and Spine Institute, INSERM U975, CNRS UMR 7225, UPMC-P6 UMR S 1127, 7561 Paris Cedex 13, France, Laboratoire de Neurosciences Cognitives, INSERM U960, and Département d'Etudes Cognitives, Ecole Normale Supérieure, 7505, Paris, France.

出版信息

J Neurosci. 2014 Nov 19;34(47):15621-30. doi: 10.1523/JNEUROSCI.1350-14.2014.

Abstract

The mechanisms of reward maximization have been extensively studied at both the computational and neural levels. By contrast, little is known about how the brain learns to choose the options that minimize action cost. In principle, the brain could have evolved a general mechanism that applies the same learning rule to the different dimensions of choice options. To test this hypothesis, we scanned healthy human volunteers while they performed a probabilistic instrumental learning task that varied in both the physical effort and the monetary outcome associated with choice options. Behavioral data showed that the same computational rule, using prediction errors to update expectations, could account for both reward maximization and effort minimization. However, these learning-related variables were encoded in partially dissociable brain areas. In line with previous findings, the ventromedial prefrontal cortex was found to positively represent expected and actual rewards, regardless of effort. A separate network, encompassing the anterior insula, the dorsal anterior cingulate, and the posterior parietal cortex, correlated positively with expected and actual efforts. These findings suggest that the same computational rule is applied by distinct brain systems, depending on the choice dimension-cost or benefit-that has to be learned.

摘要

奖励最大化的机制在计算和神经水平上都得到了广泛的研究。相比之下,大脑如何学会选择最小化行动成本的选项却知之甚少。原则上,大脑可能已经进化出一种通用机制,将相同的学习规则应用于选择选项的不同维度。为了检验这一假设,我们在健康的人类志愿者执行概率性工具学习任务时对他们进行了扫描,该任务在物理努力和与选择选项相关的货币回报方面都有所不同。行为数据表明,使用预测误差来更新预期的相同计算规则可以解释奖励最大化和努力最小化。然而,这些与学习相关的变量在部分分离的大脑区域中被编码。与之前的发现一致,腹内侧前额叶皮层被发现无论努力程度如何,都能积极地表示预期和实际的奖励。一个包含前岛叶、背侧前扣带皮层和后顶叶皮层的分离网络与预期和实际的努力呈正相关。这些发现表明,取决于要学习的选择维度——成本还是收益——不同的大脑系统会应用相同的计算规则。

相似文献

5
6
Neurocomputational mechanisms underlying subjective valuation of effort costs.努力成本主观评估背后的神经计算机制。
PLoS Biol. 2017 Feb 24;15(2):e1002598. doi: 10.1371/journal.pbio.1002598. eCollection 2017 Feb.
7
Neural Mechanisms for Adaptive Learned Avoidance of Mental Effort.适应学习避免心理努力的神经机制。
J Neurosci. 2018 Mar 7;38(10):2631-2651. doi: 10.1523/JNEUROSCI.1995-17.2018. Epub 2018 Feb 5.
9
Neural correlates of effort-based behavioral inconsistency.基于努力的行为不一致的神经相关物。
Cortex. 2019 Apr;113:96-110. doi: 10.1016/j.cortex.2018.12.005. Epub 2018 Dec 15.

引用本文的文献

4
Day-to-day fluctuations in motivation drive effort-based decision-making.动机的日常波动驱动基于努力的决策。
Proc Natl Acad Sci U S A. 2025 Mar 25;122(12):e2417964122. doi: 10.1073/pnas.2417964122. Epub 2025 Mar 17.

本文引用的文献

5
Parabolic discounting of monetary rewards by physical effort.体力付出对货币奖励的抛物线式折扣。
Behav Processes. 2013 Nov;100:192-6. doi: 10.1016/j.beproc.2013.09.014. Epub 2013 Oct 15.
6
Bayesian model selection for group studies - revisited.贝叶斯模型选择在组研究中的应用 - 再探。
Neuroimage. 2014 Jan 1;84:971-85. doi: 10.1016/j.neuroimage.2013.08.065. Epub 2013 Sep 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验