Materials Sciences Division and ‡Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.
J Am Chem Soc. 2014 Dec 24;136(51):17827-35. doi: 10.1021/ja5101323. Epub 2014 Dec 9.
In order for hydrogen gas to be used as a fuel, it must be stored in sufficient quantity on board the vehicle. Efforts are being made to increase the hydrogen storage capabilities of metal-organic frameworks (MOFs) by introducing unsaturated metal sites into their linking element(s), as hydrogen adsorption centers. In order to devise successful hydrogen storage strategies there is a need for a fundamental understanding of the weak and elusive hydrogen physisorption interaction. Here we report our findings from the investigation of the weak intermolecular interactions of adsorbed hydrogen molecules on MOF-linkers by using cluster models. Since physical interactions such as dispersion and polarization have a major contribution to attraction energy, our approach is to analyze the adsorption interaction using energy decomposition analysis (EDA) that distinguishes the contribution of the physical interactions from the charge-transfer (CT) "chemical" interaction. Surprisingly, it is found that CT from the adsorbent to the σ*(H2) orbital is present in all studied complexes and can contribute up to approximately -2 kJ/mol to the interaction. When metal ions are present, donation from the σ(H2) → metal Rydberg-like orbital, along with the adsorbent → σ*(H2) contribution, can contribute from -2 to -10 kJ/mol, depending on the coordination mode. To reach a sufficient adsorption enthalpy for practical usage, the hydrogen molecule must be substantially polarized. Ultimately, the ability of the metalated linker to polarize the hydrogen molecule is highly dependent on the geometry of the metal ion coordination site where a strong electrostatic dipole or quadrupole moment is required.
为了使氢气能够作为燃料使用,必须在车辆上储存足够数量的氢气。人们正在努力通过在其连接元素(多个)中引入不饱和金属位点作为氢吸附中心来提高金属有机骨架(MOF)的储氢能力。为了设计成功的储氢策略,需要对弱且难以捉摸的氢物理吸附相互作用有基本的了解。在这里,我们通过使用团簇模型研究了吸附在 MOF-连接体上的氢分子的弱分子间相互作用,报告了我们的发现。由于诸如色散和极化等物理相互作用对吸引力能量有很大的贡献,因此我们的方法是使用能量分解分析(EDA)来分析吸附相互作用,该方法可以区分物理相互作用和电荷转移(CT)“化学”相互作用的贡献。令人惊讶的是,发现在所有研究的配合物中都存在从吸附剂到σ*(H2)轨道的 CT,并且可以对相互作用贡献高达约-2 kJ/mol。当存在金属离子时,来自σ(H2)→金属类 Rydberg 轨道的捐赠以及吸附剂→σ*(H2)的贡献,取决于配位模式,可以从-2 贡献至-10 kJ/mol。为了达到实际使用所需的足够吸附焓,必须使氢分子充分极化。最终,金属化连接体极化氢分子的能力高度依赖于金属离子配位位点的几何形状,需要有强的静电偶极子或四极子矩。