Cha Jongjin, Lee Geon, Lee Dukhyung, Kim Dai-Sik, Kim Sunghwan
Department of Physics and Astronomy, Seoul National University (SNU), Seoul, 08826, Republic of Korea.
Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
Sci Rep. 2025 Apr 2;15(1):11323. doi: 10.1038/s41598-025-96200-6.
Sub-10 nm nanostructures with high precision and uniformity are of significant interest due to their unique quantum properties and critical role in next-generation devices. However, current fabrication techniques are often constrained by the slow, small-area processes of electron beam lithography or the high costs of extreme ultraviolet (EUV) lithography, limiting broader accessibility. To address these challenges, we have advanced the atomic layer lithography method into an efficient, scalable approach for fabricating sub-10 nm nanogaps with high uniformity across entire wafer areas. The key strategy of this method is the direct employment of photoresist patterns as both protective and sacrificial layers, streamlining the process. Comprehensive optical and electron microscopy analyses, supported by COMSOL simulations and terahertz transmission measurements, confirm the formation of highly uniform, high-quality nanogaps across the entire wafer. Compared to the original atomic layer lithography, our approach offers enhanced patterning flexibility, including a simplified process, improved compatibility with a wide range of metals, and the ability to perform additional patterning on initial nanogap structures. This scalable technique, compatible with standard lithographic tools, provides a promising pathway for sub-10 nm nanogap fabrication, with strong potential for both academic research and industrial applications.
具有高精度和均匀性的亚10纳米纳米结构因其独特的量子特性以及在下一代器件中的关键作用而备受关注。然而,目前的制造技术常常受到电子束光刻缓慢、小面积工艺的限制,或者极紫外(EUV)光刻的高成本制约,限制了其更广泛的应用。为应对这些挑战,我们将原子层光刻方法改进为一种高效、可扩展的方法,用于在整个晶圆区域制造具有高均匀性的亚10纳米纳米间隙。该方法的关键策略是直接将光刻胶图案用作保护层和牺牲层,简化了工艺。由COMSOL模拟和太赫兹传输测量支持的全面光学和电子显微镜分析证实,在整个晶圆上形成了高度均匀、高质量的纳米间隙。与原始的原子层光刻相比,我们的方法提供了增强的图案化灵活性,包括简化的工艺、与多种金属更好的兼容性,以及对初始纳米间隙结构进行额外图案化的能力。这种与标准光刻工具兼容的可扩展技术为亚10纳米纳米间隙制造提供了一条有前景的途径,在学术研究和工业应用方面都具有强大的潜力。