Device Research Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
1] Device Research Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA [2] Department of Mechanical Engineering, Kyung Hee University, Yongin 446-701, Korea.
Nat Nanotechnol. 2014 Feb;9(2):126-30. doi: 10.1038/nnano.2013.286. Epub 2014 Jan 19.
The most common approaches to generating power from sunlight are either photovoltaic, in which sunlight directly excites electron-hole pairs in a semiconductor, or solar-thermal, in which sunlight drives a mechanical heat engine. Photovoltaic power generation is intermittent and typically only exploits a portion of the solar spectrum efficiently, whereas the intrinsic irreversibilities of small heat engines make the solar-thermal approach best suited for utility-scale power plants. There is, therefore, an increasing need for hybrid technologies for solar power generation. By converting sunlight into thermal emission tuned to energies directly above the photovoltaic bandgap using a hot absorber-emitter, solar thermophotovoltaics promise to leverage the benefits of both approaches: high efficiency, by harnessing the entire solar spectrum; scalability and compactness, because of their solid-state nature; and dispatchablility, owing to the ability to store energy using thermal or chemical means. However, efficient collection of sunlight in the absorber and spectral control in the emitter are particularly challenging at high operating temperatures. This drawback has limited previous experimental demonstrations of this approach to conversion efficiencies around or below 1% (refs 9, 10, 11). Here, we report on a full solar thermophotovoltaic device, which, thanks to the nanophotonic properties of the absorber-emitter surface, reaches experimental efficiencies of 3.2%. The device integrates a multiwalled carbon nanotube absorber and a one-dimensional Si/SiO2 photonic-crystal emitter on the same substrate, with the absorber-emitter areas optimized to tune the energy balance of the device. Our device is planar and compact and could become a viable option for high-performance solar thermophotovoltaic energy conversion.
利用太阳能发电最常见的方法是光伏(photovoltaic)或太阳能热(solar-thermal)。前者是指阳光直接激发半导体中的电子-空穴对,后者是指阳光驱动机械热机。光伏发电是间歇性的,通常只能有效地利用太阳能光谱的一部分,而小型热机的固有不可逆性使得太阳能热方法最适合用于大型公用事业规模的发电厂。因此,对于太阳能发电的混合技术的需求日益增长。通过使用热吸收体-发射器将阳光转换为调谐到高于光伏带隙的能量的热发射,太阳能热光伏有望利用这两种方法的优势:通过利用整个太阳能光谱实现高效率;由于其固态性质实现可扩展性和紧凑性;由于能够使用热或化学手段存储能量,从而实现可调度性。然而,在高温运行下,高效地在吸收体中收集阳光和在发射器中进行光谱控制特别具有挑战性。这一缺点限制了之前这种方法的实验演示效率,其转换效率约为 1%或低于 1%(参考文献 9、10、11)。在这里,我们报告了一种全太阳能热光伏器件,由于吸收体-发射器表面的纳米光子特性,该器件达到了 3.2%的实验效率。该器件在同一衬底上集成了多壁碳纳米管吸收体和一维 Si/SiO2 光子晶体发射器,通过优化吸收体-发射器的面积来调节器件的能量平衡。我们的器件是平面的和紧凑的,可能成为高性能太阳能热光伏能量转换的可行选择。