Suppr超能文献

动态分裂归一化预测决策相关回路中随时间变化的值编码。

Dynamic divisive normalization predicts time-varying value coding in decision-related circuits.

作者信息

Louie Kenway, LoFaro Thomas, Webb Ryan, Glimcher Paul W

机构信息

Center for Neural Science, and Institute for the Interdisciplinary Study of Decision Making, New York University, New York, New York 10003,

Department of Mathematics and Computer Science, Gustavus Adolphus College, St Peter, Minnesota 56082, and.

出版信息

J Neurosci. 2014 Nov 26;34(48):16046-57. doi: 10.1523/JNEUROSCI.2851-14.2014.

Abstract

Normalization is a widespread neural computation, mediating divisive gain control in sensory processing and implementing a context-dependent value code in decision-related frontal and parietal cortices. Although decision-making is a dynamic process with complex temporal characteristics, most models of normalization are time-independent and little is known about the dynamic interaction of normalization and choice. Here, we show that a simple differential equation model of normalization explains the characteristic phasic-sustained pattern of cortical decision activity and predicts specific normalization dynamics: value coding during initial transients, time-varying value modulation, and delayed onset of contextual information. Empirically, we observe these predicted dynamics in saccade-related neurons in monkey lateral intraparietal cortex. Furthermore, such models naturally incorporate a time-weighted average of past activity, implementing an intrinsic reference-dependence in value coding. These results suggest that a single network mechanism can explain both transient and sustained decision activity, emphasizing the importance of a dynamic view of normalization in neural coding.

摘要

归一化是一种广泛存在的神经计算方式,在感觉处理中介导除法增益控制,并在与决策相关的额叶和顶叶皮层中实现依赖于上下文的价值编码。尽管决策是一个具有复杂时间特征的动态过程,但大多数归一化模型都是与时间无关的,对于归一化与选择之间的动态相互作用知之甚少。在这里,我们表明一个简单的归一化微分方程模型可以解释皮层决策活动的特征性相位-持续模式,并预测特定的归一化动态:初始瞬态期间的价值编码、随时间变化的价值调制以及上下文信息的延迟出现。从实验上看,我们在猴子外侧顶内皮层与扫视相关的神经元中观察到了这些预测的动态。此外,此类模型自然地纳入了过去活动的时间加权平均值,在价值编码中实现了内在的参考依赖性。这些结果表明,单一的网络机制可以解释瞬态和持续的决策活动,强调了在神经编码中对归一化进行动态观察的重要性。

相似文献

1
Dynamic divisive normalization predicts time-varying value coding in decision-related circuits.
J Neurosci. 2014 Nov 26;34(48):16046-57. doi: 10.1523/JNEUROSCI.2851-14.2014.
2
Reward value-based gain control: divisive normalization in parietal cortex.
J Neurosci. 2011 Jul 20;31(29):10627-39. doi: 10.1523/JNEUROSCI.1237-11.2011.
3
Dynamics of cortical neuronal ensembles transit from decision making to storage for later report.
J Neurosci. 2012 Aug 29;32(35):11956-69. doi: 10.1523/JNEUROSCI.6176-11.2012.
4
Efficient coding and the neural representation of value.
Ann N Y Acad Sci. 2012 Mar;1251:13-32. doi: 10.1111/j.1749-6632.2012.06496.x.
5
Divisive Normalization Predicts Adaptation-Induced Response Changes in Macaque Inferior Temporal Cortex.
J Neurosci. 2016 Jun 1;36(22):6116-28. doi: 10.1523/JNEUROSCI.2011-15.2016.
6
Normalized value coding explains dynamic adaptation in the human valuation process.
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12696-12701. doi: 10.1073/pnas.1715293114. Epub 2017 Nov 13.
7
Multiple timescales of normalized value coding underlie adaptive choice behavior.
Nat Commun. 2018 Aug 10;9(1):3206. doi: 10.1038/s41467-018-05507-8.
8
Adaptive Value Normalization in the Prefrontal Cortex Is Reduced by Memory Load.
eNeuro. 2017 Apr 27;4(2). doi: 10.1523/ENEURO.0365-17.2017. eCollection 2017 Mar-Apr.
10
Normalization is a general neural mechanism for context-dependent decision making.
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):6139-44. doi: 10.1073/pnas.1217854110. Epub 2013 Mar 25.

引用本文的文献

1
Hierarchical Neural Circuit Theory of Normalization and Inter-areal Communication.
bioRxiv. 2025 Jul 19:2025.07.15.664935. doi: 10.1101/2025.07.15.664935.
2
Early versus late noise differentially enhances or degrades context-dependent choice.
Nat Commun. 2025 Apr 23;16(1):3828. doi: 10.1038/s41467-025-59140-3.
5
Neural dynamics in the orbitofrontal cortex reveal cognitive strategies.
bioRxiv. 2024 Oct 29:2024.10.29.620879. doi: 10.1101/2024.10.29.620879.
6
Computational model links normalization to chemoarchitecture in the human visual system.
Sci Adv. 2024 Jan 5;10(1):eadj6102. doi: 10.1126/sciadv.adj6102. Epub 2024 Jan 3.
9
Neural Mechanisms That Make Perceptual Decisions Flexible.
Annu Rev Physiol. 2023 Feb 10;85:191-215. doi: 10.1146/annurev-physiol-031722-024731. Epub 2022 Nov 7.
10
Neuronal Response to Reward and Luminance in Macaque LIP During Saccadic Choice.
Neurosci Bull. 2023 Jan;39(1):14-28. doi: 10.1007/s12264-022-00948-0. Epub 2022 Sep 17.

本文引用的文献

1
Normalization is a general neural mechanism for context-dependent decision making.
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):6139-44. doi: 10.1073/pnas.1217854110. Epub 2013 Mar 25.
2
Temporal adaptation enhances efficient contrast gain control on natural images.
PLoS Comput Biol. 2013;9(1):e1002889. doi: 10.1371/journal.pcbi.1002889. Epub 2013 Jan 31.
3
Neural dynamics and circuit mechanisms of decision-making.
Curr Opin Neurobiol. 2012 Dec;22(6):1039-46. doi: 10.1016/j.conb.2012.08.006. Epub 2012 Sep 28.
6
Mechanisms underlying cortical activity during value-guided choice.
Nat Neurosci. 2012 Jan 8;15(3):470-6, S1-3. doi: 10.1038/nn.3017.
7
Normalization as a canonical neural computation.
Nat Rev Neurosci. 2011 Nov 23;13(1):51-62. doi: 10.1038/nrn3136.
8
How inhibition shapes cortical activity.
Neuron. 2011 Oct 20;72(2):231-43. doi: 10.1016/j.neuron.2011.09.027.
9
Reward value-based gain control: divisive normalization in parietal cortex.
J Neurosci. 2011 Jul 20;31(29):10627-39. doi: 10.1523/JNEUROSCI.1237-11.2011.
10
Contrast gain control in auditory cortex.
Neuron. 2011 Jun 23;70(6):1178-91. doi: 10.1016/j.neuron.2011.04.030.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验