Suppr超能文献

使用结构方程模型评估大脑中的功能连接性:功效和样本量考量

Using Structural Equation Modeling to Assess Functional Connectivity in the Brain: Power and Sample Size Considerations.

作者信息

Sideridis Georgios, Simos Panagiotis, Papanicolaou Andrew, Fletcher Jack

机构信息

Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.

University of Crete, Herakleion, Greece.

出版信息

Educ Psychol Meas. 2014 Oct;74(5):733-758. doi: 10.1177/0013164414525397.

Abstract

The present study assessed the impact of sample size on the power and fit of structural equation modeling applied to functional brain connectivity hypotheses. The data consisted of time-constrained minimum norm estimates of regional brain activity during performance of a reading task obtained with magnetoencephalography. Power analysis was first conducted for an autoregressive model with 5 latent variables (brain regions), each defined by 3 indicators (successive activity time bins). A series of simulations were then run by generating data from an existing pool of 51 typical readers (aged 7.5-12.5 years). Sample sizes ranged between 20 and 1,000 participants and for each sample size 1,000 replications were run. Results were evaluated using chi-square Type I errors, model convergence, mean RMSEA (root mean square error of approximation) values, confidence intervals of the RMSEA, structural path stability, and D-Fit index values. Results suggested that 70 to 80 participants were adequate to model relationships reflecting close to not so close fit as per MacCallum et al.'s recommendations. Sample sizes of 50 participants were associated with satisfactory fit. It is concluded that structural equation modeling is a viable methodology to model complex regional interdependencies in brain activation in pediatric populations.

摘要

本研究评估了样本量对应用于功能性脑连接假设的结构方程模型的效能和拟合度的影响。数据包括在阅读任务执行期间通过脑磁图获得的区域脑活动的时间受限最小范数估计值。首先对一个具有5个潜在变量(脑区)的自回归模型进行效能分析,每个潜在变量由3个指标(连续活动时间区间)定义。然后通过从现有的51名典型读者(年龄在7.5至12.5岁之间)的数据池中生成数据来运行一系列模拟。样本量在20至1000名参与者之间,对于每个样本量运行1000次重复。使用卡方I型错误、模型收敛、平均RMSEA(近似均方根误差)值、RMSEA的置信区间、结构路径稳定性和D-Fit指数值来评估结果。结果表明,根据麦卡勒姆等人的建议,70至80名参与者足以对反映接近不太拟合的关系进行建模。50名参与者的样本量具有令人满意的拟合度。得出的结论是,结构方程模型是一种可行的方法,可用于对儿科人群脑激活中的复杂区域相互依存关系进行建模。

相似文献

2
Analytical power calculations for structural equation modeling: A tutorial and Shiny app.
Behav Res Methods. 2021 Aug;53(4):1385-1406. doi: 10.3758/s13428-020-01479-0. Epub 2020 Nov 2.
6
Power analyses for measurement model misspecification and response shift detection with structural equation modeling.
Qual Life Res. 2024 May;33(5):1241-1256. doi: 10.1007/s11136-024-03605-3. Epub 2024 Mar 1.
7
The Problem with Having Two Watches: Assessment of Fit When RMSEA and CFI Disagree.
Multivariate Behav Res. 2016 Mar-Jun;51(2-3):220-39. doi: 10.1080/00273171.2015.1134306. Epub 2016 Mar 25.
8
Evaluating the performance of existing and novel equivalence tests for fit indices in structural equation modelling.
Br J Math Stat Psychol. 2024 Feb;77(1):103-129. doi: 10.1111/bmsp.12317. Epub 2023 Jul 13.
10
The Effect of Latent and Error Non-Normality on Measures of Fit in Structural Equation Modeling.
Educ Psychol Meas. 2022 Oct;82(5):911-937. doi: 10.1177/00131644211046201. Epub 2021 Sep 20.

引用本文的文献

1
Blockchain technology and its impact on sustainable supply chain management in SMEs.
PeerJ Comput Sci. 2025 Mar 4;11:e2466. doi: 10.7717/peerj-cs.2466. eCollection 2025.
4
US state death rates: Structural equation modeling of Big Five personality, socioeconomic status, and health risk factors.
J Health Psychol. 2025 Sep;30(11):3153-3168. doi: 10.1177/13591053241306564. Epub 2025 Jan 2.
5
Growth Mindset Is Associated With Mastery Goals in Adulthood.
Eur J Psychol. 2024 Aug 30;20(3):191-201. doi: 10.5964/ejop.11915. eCollection 2024 Aug.
9
The impact of context cues on college students' purchase behavior for low-carbon products in CBEC.
Front Psychol. 2023 Dec 22;14:1287235. doi: 10.3389/fpsyg.2023.1287235. eCollection 2023.
10
Factors affecting job performance of Sri Lankan IT professionals working from home.
PLoS One. 2023 Dec 20;18(12):e0295305. doi: 10.1371/journal.pone.0295305. eCollection 2023.

本文引用的文献

2
Fit Indices Versus Test Statistics.
Multivariate Behav Res. 2005 Jan 1;40(1):115-48. doi: 10.1207/s15327906mbr4001_5.
3
Structural Model Evaluation and Modification: An Interval Estimation Approach.
Multivariate Behav Res. 1990 Apr 1;25(2):173-80. doi: 10.1207/s15327906mbr2502_4.
4
Measurement Model Quality, Sample Size, and Solution Propriety in Confirmatory Factor Models.
Multivariate Behav Res. 2006 Mar 1;41(1):65-83. doi: 10.1207/s15327906mbr4101_5.
5
Power Analysis in Covariance Structure Modeling Using GFI and AGFI.
Multivariate Behav Res. 1997 Apr 1;32(2):193-210. doi: 10.1207/s15327906mbr3202_5.
6
Is More Ever Too Much? The Number of Indicators per Factor in Confirmatory Factor Analysis.
Multivariate Behav Res. 1998 Apr 1;33(2):181-220. doi: 10.1207/s15327906mbr3302_1.
7
8
Cortical signatures of dyslexia and remediation: an intrinsic functional connectivity approach.
PLoS One. 2013;8(2):e55454. doi: 10.1371/journal.pone.0055454. Epub 2013 Feb 11.
10
Structural equation modeling with small sample sizes using two-stage ridge least-squares estimation.
Behav Res Methods. 2013 Mar;45(1):75-81. doi: 10.3758/s13428-012-0206-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验