Wolf Erika J, Harrington Kelly M, Clark Shaunna L, Miller Mark W
National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA ; Boston University School of Medicine, Boston, MA, USA.
Center for Biomarker Research and Personalized Medicine, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA.
Educ Psychol Meas. 2013 Dec;76(6):913-934. doi: 10.1177/0013164413495237.
Determining sample size requirements for structural equation modeling (SEM) is a challenge often faced by investigators, peer reviewers, and grant writers. Recent years have seen a large increase in SEMs in the behavioral science literature, but consideration of sample size requirements for applied SEMs often relies on outdated rules-of-thumb. This study used Monte Carlo data simulation techniques to evaluate sample size requirements for common applied SEMs. Across a series of simulations, we systematically varied key model properties, including number of indicators and factors, magnitude of factor loadings and path coefficients, and amount of missing data. We investigated how changes in these parameters affected sample size requirements with respect to statistical power, bias in the parameter estimates, and overall solution propriety. Results revealed a range of sample size requirements (i.e., from 30 to 460 cases), meaningful patterns of association between parameters and sample size, and highlight the limitations of commonly cited rules-of-thumb. The broad "lessons learned" for determining SEM sample size requirements are discussed.
确定结构方程模型(SEM)所需的样本量是研究人员、同行评审人员和资助申请书撰写者经常面临的一项挑战。近年来,行为科学文献中的结构方程模型数量大幅增加,但对于应用结构方程模型所需样本量的考量往往依赖于过时的经验法则。本研究采用蒙特卡洛数据模拟技术来评估常见应用结构方程模型所需的样本量。在一系列模拟中,我们系统地改变了关键模型属性,包括指标和因子的数量、因子载荷和路径系数的大小以及缺失数据的数量。我们研究了这些参数的变化如何影响样本量需求,涉及统计功效、参数估计中的偏差以及整体解的恰当性。结果揭示了一系列样本量需求(即从30到460个案例)、参数与样本量之间有意义的关联模式,并突出了常用经验法则的局限性。文中讨论了确定结构方程模型样本量需求的广泛“经验教训”。