Suppr超能文献

心脏病发作和中风死亡率的邻里地理差异:全球和局部建模方法的比较

Neighborhood geographic disparities in heart attack and stroke mortality: comparison of global and local modeling approaches.

作者信息

Odoi Agricola, Busingye Doreen

机构信息

The University of Tennessee, Department of Biomedical and Diagnostic Sciences, 2407 River Drive, Knoxville, TN 37996, USA.

The University of Tennessee, Department of Biomedical and Diagnostic Sciences, 2407 River Drive, Knoxville, TN 37996, USA.

出版信息

Spat Spatiotemporal Epidemiol. 2014 Oct;11:109-23. doi: 10.1016/j.sste.2014.10.001. Epub 2014 Oct 22.

Abstract

This study investigated neighborhood geographic disparities in myocardial infarction (MI) and stroke mortality risks in middle Tennessee and identified determinants of observed disparities. Descriptive and spatial analyses were performed on MI and stroke mortality data covering the time period 1999-2007. Besag, York and Molliè (BYM) model was used to investigate spatial patterns. Global (BYM) and local models [Poisson Geographically Weighted Generalized Linear Models (GWGLM)] were used to investigate determinants of the identified spatial patterns. Significant (p<0.05) differences in mortality risks by sex, race, age and education were observed. Rural census tracts (CT) and those with higher proportions of the older populations were associated with high MI and stroke mortality risks. Additionally, CTs with high proportions of widows had significantly higher mortality risks for stroke. There was evidence of geographical variability of all regression coefficients implying that local models complement the findings of the global models and provide useful information to guide local and regional disease control decisions and resource allocation. Identification of high risk CTs is essential for targeting resources and will aid the development of more needs-based prevention programs.

摘要

本研究调查了田纳西州中部地区心肌梗死(MI)和中风死亡风险的邻里地理差异,并确定了观察到的差异的决定因素。对1999 - 2007年期间的MI和中风死亡率数据进行了描述性和空间分析。使用贝萨格(Besag)、约克(York)和莫利耶(Molliè)(BYM)模型来研究空间模式。全局(BYM)模型和局部模型[泊松地理加权广义线性模型(GWGLM)]用于研究已识别空间模式的决定因素。观察到按性别、种族、年龄和教育程度划分的死亡风险存在显著(p<0.05)差异。农村普查区(CT)以及老年人口比例较高的地区与高MI和中风死亡风险相关。此外,寡妇比例高的CT中风死亡风险显著更高。所有回归系数都存在地理变异性的证据,这意味着局部模型补充了全局模型的结果,并为指导地方和区域疾病控制决策及资源分配提供了有用信息。识别高风险CT对于资源定位至关重要,并将有助于制定更基于需求的预防计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验