Nanobiosensors and Bioanalytical Applications Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and CIBER-BBN, 08193 Bellaterra (Barcelona), Spain.
University of Malaga, IBIMA, Department of Organic Chemistry, 29071 Malaga, Spain; Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnologico de Andalucia, 29590 Malaga, Spain.
Biosens Bioelectron. 2015 Apr 15;66:115-23. doi: 10.1016/j.bios.2014.10.081. Epub 2014 Nov 13.
A label-free biosensing strategy for amoxicillin (AX) allergy diagnosis based on the combination of novel dendrimer-based conjugates and a recently developed nanoplasmonic sensor technology is reported. Gold nanodisks were functionalized with a custom-designed thiol-ending-polyamido-based dendron (d-BAPAD) peripherally decorated with amoxicilloyl (AXO) groups (d-BAPAD-AXO) in order to detect specific IgE generated in patient's serum against this antibiotic during an allergy outbreak. This innovative strategy, which follows a simple one-step immobilization procedure, shows exceptional results in terms of sensitivity and robustness, leading to a highly-reproducible and long-term stable surface which allows achieving extremely low limits of detection. Moreover, the viability of this biosensor approach to analyze human biological samples has been demonstrated by directly analyzing and quantifying specific anti-AX antibodies in patient's serum without any sample pretreatment. An excellent limit of detection (LoD) of 0.6ng/mL (i.e. 0.25kU/L) has been achieved in the evaluation of clinical samples evidencing the potential of our nanoplasmonic biosensor as an advanced diagnostic tool to quickly identify allergic patients. The results have been compared and validated with a conventional clinical immunofluorescence assay (ImmunoCAP test), confirming an excellent correlation between both techniques. The combination of a novel compact nanoplasmonic platform and a dendrimer-based strategy provides a highly sensitive label free biosensor approach with over two times better detectability than conventional SPR. Both the biosensor device and the carrier structure hold great potential in clinical diagnosis for biomarker analysis in whole serum samples and other human biological samples.
基于新型树状大分子结合物和最近开发的纳米等离子体传感器技术,提出了一种用于阿莫西林(AX)过敏诊断的无标记生物传感策略。金纳米盘通过定制的硫醇端聚酰胺基树状大分子(d-BAPAD)进行功能化,该树状大分子的外围用阿莫西林酰基(AXO)基团进行修饰(d-BAPAD-AXO),以检测在过敏爆发期间患者血清中针对这种抗生素产生的特异性 IgE。这种创新策略遵循简单的一步固定程序,在灵敏度和稳健性方面表现出色,导致高度可重复和长期稳定的表面,从而实现极低的检测极限。此外,通过直接分析和定量患者血清中的特异性抗 AX 抗体,无需任何样品预处理,证明了这种生物传感器方法分析人类生物样品的可行性。在评估临床样本时,达到了 0.6ng/mL(即 0.25kU/L)的出色检测极限(LoD),证明了我们的纳米等离子体生物传感器作为快速识别过敏患者的先进诊断工具的潜力。将结果与传统的临床免疫荧光测定法(ImmunoCAP 测试)进行了比较和验证,证实了两种技术之间具有极好的相关性。新型紧凑型纳米等离子体平台和基于树状大分子的策略的结合提供了一种高度灵敏的无标记生物传感器方法,比传统的 SPR 具有高两倍的检测能力。生物传感器装置和载体结构都具有在整个血清样本和其他人类生物样本中进行生物标志物分析的临床诊断中的巨大潜力。